Skip to main content Skip to main navigation menu Skip to site footer

Plasmodium falciparum Serine Repeat Antigen 5 (PfSERA5): current vaccine candidate for Plasmodium falciparum malaria

  • Ayuti Bulaan ,
  • W. Riski Widya Mulyani ,
  • Agung Nova Mahendra ,
  • I Wayan Sumardika ,


Background: Most of the malaria cases are caused by Plasmodium falciparum infection. The prevalence of cases and high mortality rates due to malaria should be watched out globally. However, currently, efforts to prevent and treat malaria suffer obstacles due to resistance to insecticides and antimalarial drugs. For these reasons, other preventive measures are needed, such as vaccines. This study aims to review the Plasmodium falciparum Serine Repeat Antigen 5 (PfSERA5) as a potential candidate for Plasmodium falciparum malaria vaccine development. 

Methods: Of the 65 journals reviewed, 51 journals were found to be suitable as references for this paper. The keywords included in selected search engines are "malaria" "PfSERA5", "Plasmodium falciparum", and "malaria vaccine". Search results and studies show that the erythrocytic phase of the vaccine can fight malaria parasites that escape the liver stage while reducing or eliminating clinical symptoms. Data were analyzed and written in a narrative form.

Results: PfSERA5 is an asexual erythrocytic stage antigen that accumulates in the parasitophorous vacuole. The PfSERA5, SE47 and SE36 (modified SE47) domains can induce the formation of antibodies that protect against falciparum malaria infection in vivo and in vitro. This protective mechanism, caused by PfSERA5 (anti-SE47 and anti-SE36) specific antibodies, occurs through inhibition of parasite growth and merozoite lysis. PfSERA5 also does not show antigenic variations and has limited polymorphism, so the probability of resistance can be reduced. 

Conclusion: Based on this, PfSERA5 has great potential as an effective erythrocytic phase vaccine candidate. However, further studies are needed regarding the toxicological and pharmacological properties of PfSERA5, both in vivo and in clinical settings.


  1. Moss WJ, Dorsey G, Mueller I, Laufer MK, Krogstat DJ, Vinetz JM, et al. Malaria Epidemiology and Control Within the International Centers of Excellence for Malaria Research. Am J Trop Med Hyg. 2015;93(3 Suppl):5–15.
  2. Sitohang V, Sariwati E, Fajariyani SB, Hwang D, Kurnia B, Hapsari RK, et al. Malaria elimination in Indonesia: halfway there. Lancet Glob Health. 2018;6(6):e604–e606.
  3. Hanandita W, Tampubolon G. Geography and social distribution of malaria in Indonesian Papua: a cross-sectional study. Int J Health Geogr. 2016;15:13.
  4. Raghavendra K, Barik TK, Reddy BP, Sharma P, Dash AP. Malaria vector control: from past to future. Parasitol Res. 2011;108(4):757–779.
  5. Alout H, Labbé P, Chandre F, Cohuet A. Malaria Vector Control Still Matters despite Insecticide Resistance. Trends Parasitol. 2017;33(8):610–618.
  6. Davis TM, Karunajeewa HA, Ilett KF. Artemisinin-based combination therapies for uncomplicated malaria. Med J Aust. 2005;182(4):181–185.
  7. Eastman RT, Fidock DA. Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nat Rev Microbiol. 2009;7(12):864–874.
  8. Nsanzabana C. Resistance to Artemisinin Combination Therapies (ACTs): Do Not Forget the Partner Drug!. Trop Med Infect Dis. 2019;4(1):26.
  9. Duru V, Khim N, Leang R, Kim S, Domergue A, Kloeung N, et al. Plasmodium falciparum dihydroartemisinin-piperaquine failures in Cambodia are associated with mutant K13 parasites presenting high survival rates in novel piperaquine in vitro assays: retrospective and prospective investigations. BMC Med. 2015;13:305.
  10. Lubell Y, Dondorp A, Guérin PJ, Drake T, Meek S, Ashley J, et al. Artemisinin resistance--modelling the potential human and economic costs. Malar J. 2014;13:452.
  11. Zhu L, Tripathi J, Rocamora FM, Miotto O, van der Pluijm R, Voss TS, et al. The origins of malaria artemisinin resistance defined by a genetic and transcriptomic background. Nat Commun. 2018;9(1):5158.
  12. Bejon P, Lusingu J, Olotu A, Leach A, Lievens M, Vekemans J, et al. Efficacy of RTS,S/AS01E vaccine against malaria in children 5 to 17 months of age. N Engl J Med. 2008;359(24):2521–2532.
  13. Palacpac NM, Arisue N, Tougan T, Ishii KJ, Horii T. Plasmodium falciparum serine repeat antigen 5 (SE36) as a malaria vaccine candidate. Vaccine. 2011;29(35):5837–5845.
  14. Perrin LH, Merkli B, Loche M, Chizzolini C, Smart J, Richle R. Antimalarial immunity in Saimiri monkeys. Immunization with surface components of asexual blood stages. J Exp Med. 1984;160(2):441–451.
  15. Chulay JD, Lyon JA, Haynes JD, Meierovics AI, Atkinson CT, Aikawa M. Monoclonal antibody characterization of Plasmodium falciparum antigens in immune complexes formed when schizonts rupture in the presence of immune serum. J Immunol. 1987;139(8):2768–2774.
  16. Kanodia S, Kumar G, Rizzi L, Pedretti A, Hodder AN, Romeo S, et al. Synthetic peptides derived from the C-terminal 6kDa region of Plasmodium falciparum SERA5 inhibit the enzyme activity and malaria parasite development. Biochim Biophys Acta. 2014;1840(9):2765–2775.
  17. Tanabe K, Arisue N, Palacpac NM, Yagi M, Tougan T, Honma H, et al. Geographic differentiation of polymorphism in the Plasmodium falciparum malaria vaccine candidate gene SERA5. Vaccine. 2012;30(9):1583–1593.
  18. Chan JA, Fowkes FJ, Beeson JG. Surface antigens of Plasmodium falciparum-infected erythrocytes as immune targets and malaria vaccine candidates. Cell Mol Life Sci. 2014;71(19):3633–3657.
  19. Holder AA. The carboxy-terminus of merozoite surface protein 1: structure, specific antibodies and immunity to malaria. Parasitology. 2009;136(12):1445–1456.
  20. Remarque EJ, Faber BW, Kocken CH, Thomas AW. Apical membrane antigen 1: a malaria vaccine candidate in review. Trends Parasitol. 2008;24(2):74–84.
  21. Lyon JA, Angov E, Fay MP, Sullivan JS, Girourd AS, Robinson SJ, et al. Protection induced by Plasmodium falciparum MSP1(42) is strain-specific, antigen and adjuvant dependent, and correlates with antibody responses. PLoS One. 2008;3(7):e2830.
  22. Dutta S, Sullivan JS, Grady KK, Haynes JD, Komisar J, Batchelor AH, et al. High antibody titer against apical membrane antigen-1 is required to protect against malaria in the Aotus model. PLoS One. 2009;4(12):e8138.
  23. Horii T, Shirai H, Jie L, Ishii KJ, Palacpac NQ, Tougan T, et al. Evidences of protection against blood-stage infection of Plasmodium falciparum by the novel protein vaccine SE36. Parasitol Int. 2010;59(3):380–386.
  24. Okech BA, Nalunkuma A, Okello D, Pang XL, Suzue K, Li J, et al. Natural human immunoglobulin G subclass responses to Plasmodium falciparum serine repeat antigen in Uganda. Am J Trop Med Hyg. 2001;65(6):912–917.
  25. Okech B, Mujuzi G, Ogwal A, Shirai H, Horii T, Egwang TG. High titers of IgG antibodies against Plasmodium falciparum serine repeat antigen 5 (SERA5) are associated with protection against severe malaria in Ugandan children. Am J Trop Med Hyg. 2006;74(2):191–197.
  26. Pang XL, Mitamura T, Horii T. Antibodies reactive with the N-terminal domain of Plasmodium falciparum serine repeat antigen inhibit cell proliferation by agglutinating merozoites and schizonts. Infect Immun. 1999;67(4):1821–1827.
  27. Pang XL, Horii T. Complement-mediated killing of Plasmodium falciparum erythrocytic schizont with antibodies to the recombinant serine repeat antigen (SERA). Vaccine. 1998;16(13):1299–1305.
  28. Soe S, Singh S, Camus D, Horii T, Druilhe P. Plasmodium falciparum serine repeat protein, a new target of monocyte-dependent antibody-mediated parasite killing. Infect Immun. 2002;70(12):7182–7184.
  29. Palacpac NM, Ntege E, Yeka A, Balikagala B, Suzuki N, Shirai H, et al. Phase 1b randomized trial and follow-up study in Uganda of the blood-stage malaria vaccine candidate BK-SE36. PLoS One. 2013;8(5):e64073.
  30. Frischknecht F, Matuschewski K. Plasmodium Sporozoite Biology. Cold Spring Harb Perspect Med. 2017;7(5):a025478.
  31. Cowman AF, Berry D, Baum J. The cellular and molecular basis for malaria parasite invasion of the human red blood cell. J Cell Biol. 2012;198(6):961–971.
  32. Weiss GE, Gilson PR, Taechalertpaisarn T, Tham WH, de Jong NWM, Harvey KL, et al. Revealing the sequence and resulting cellular morphology of receptor-ligand interactions during Plasmodium falciparum invasion of erythrocytes. PLoS Pathog. 2015;11(2):e1004670.
  33. Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJ, Richards JS. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev. 2016;40(3):343–372.
  34. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002;419(6906):498–511.
  35. Aoki S, Li J, Itagaki S, Okech BA, Egwang TG, Matsuoka H, et al. Serine repeat antigen (SERA5) is predominantly expressed among the SERA multigene family of Plasmodium falciparum, and the acquired antibody titers correlate with serum inhibition of the parasite growth. J Biol Chem. 2002;277(49):47533–47540.
  36. Miller SK, Good RT, Drew DR, Delorenzi M, Sanders PR, Hodder AN, et al. A subset of Plasmodium falciparum SERA genes are expressed and appear to play an important role in the erythrocytic cycle. J Biol Chem. 2002;277(49):47524–47532.
  37. McCoubrie JE, Miller SK, Sargeant T, Good RT, Hodder AN, Speed TP, et al. Evidence for a common role for the serine-type Plasmodium falciparum serine repeat antigen proteases: implications for vaccine and drug design. Infect Immun. 2007;75(12):5565–5574.
  38. Blackman MJ. Malarial proteases and host cell egress: an 'emerging' cascade. Cell Microbiol. 2008;10(10):1925–1934.
  39. Yagi M, Bang G, Tougan T, Palacpac NMQ, Arisue N, Aoshi T, et al. Protective epitopes of the Plasmodium falciparum SERA5 malaria vaccine reside in intrinsically unstructured N-terminal repetitive sequences. PLoS One. 2014;9(6):e98460.
  40. Crompton PD, Pierce SK, Miller LH. Advances and challenges in malaria vaccine development. J Clin Invest. 2010;120(12):4168–4178.
  41. Barr PJ, Inselburg J, Green KM, Kansopon J, Hahm BK, Gibson HL, et al. Immunogenicity of recombinant Plasmodium falciparum SERA proteins in rodents. Mol Biochem Parasitol. 1991;45(1):159–170.
  42. Fox BA, Xing-Li P, Suzue K, Horii T, Bzik DJ. Plasmodium falciparum: an epitope within a highly conserved region of the 47-kDa amino-terminal domain of the serine repeat antigen is a target of parasite-inhibitory antibodies. Exp Parasitol. 1997;85(2):121–134.
  43. Fox BA, Horii T, Bzik DJ. Plasmodium falciparum: fine-mapping of an epitope of the serine repeat antigen that is a target of parasite-inhibitory antibodies. Exp Parasitol. 2002;101(1):69–72.
  44. Bathurst IC, Gibson HL, Kansopon J, Kahm BK, Green KM, Chang SP, et al. An experimental vaccine cocktail for Plasmodium falciparum malaria. Vaccine. 1993;11(4):449–456.
  45. Hill DL, Schofield L, Wilson DW. IgG opsonization of merozoites: multiple immune mechanisms for malaria vaccine development. Int J Parasitol. 2017;47(10-11):585–595.
  46. Mishra RP, Oviedo-Orta E, Prachi P, Rappuoli R, Bagnoli F. Vaccines and antibiotic resistance. Curr Opin Microbiol. 2012;15(5):596–602.
  47. Six A, Bellier B, Thomas-Vaslin V, Klatzmann D. Systems biology in vaccine design. Microb Biotechnol. 2012;5(2):295–304.
  48. Sugiyama T, Suzue K, Okamoto M, Inselburg J, Tai K, Horii T. Production of recombinant SERA proteins of Plasmodium falciparum in Escherichia coli by using synthetic genes. Vaccine. 1996;14(11):1069–1076.
  49. Takala SL, Smith DL, Thera MA, Coulibaly D, Doumbo OK, Plowe CV. Short report: rare Plasmodium falciparum merozoite surface protein 1 19-kda (msp-1(19)) haplotypes identified in Mali using high-throughput genotyping methods. Am J Trop Med Hyg. 2007;76(5):855–859.
  50. Draper SJ, Angov E, Horii T, et al. Recent advances in recombinant protein-based malaria vaccines. Vaccine. 2015;33(52):7433–7443.
  51. Agarwal S, Singh MK, Garg S, Chitnis CE, Singh S. Ca(2+) -mediated exocytosis of subtilisin-like protease 1: a key step in egress of Plasmodium falciparum merozoites. Cell Microbiol. 2013;15(6):910–921.

How to Cite

Bulaan, A., Mulyani, W. R. W., Mahendra, A. N., & Sumardika, I. W. (2020). Plasmodium falciparum Serine Repeat Antigen 5 (PfSERA5): current vaccine candidate for Plasmodium falciparum malaria. Intisari Sains Medis, 11(1), 320–327.




Search Panel

Ayuti Bulaan
Google Scholar
ISM Journal

W. Riski Widya Mulyani
Google Scholar
ISM Journal

Agung Nova Mahendra
Google Scholar
ISM Journal

I Wayan Sumardika
Google Scholar
ISM Journal