Skip to main content Skip to main navigation menu Skip to site footer

Encapsulated liposome toward anthocyanin in Pectin-Based Dry Jelly as a management in pediatric obesity Management: a literature review


Background: In the globalization era, the high number of obesities is happened to the teenagers because of the unhealthy life-style. Obesity in the teenagers or pediatric obesity is important to be handled because it can trigger another complication that happened in the early age. This study aims to collect and analyze any source related to anthocyanin (ASN) from purple sweet potato (Ipomoea batatas L) as modality of obesity that is packaged as dry jelly.

Methods: A literature search strategy was conducted to obtained eligible source of study such as books and journals from Google Scholar, Research Gate, and PubMed. The criteria of eligible literature used in this study were articles published on 1981-2019 from different type of study. About 73 literature were used as references regarding the potency of ASN from purple sweet potato (Ipomoea batatas L) as the modality for obese people.

Results: ASN in the purple sweet potato has anti-obesity effect by decreasing the a-glucosidase enzyme and a-amylase, increasing glucagon-like-peptide-1 and peptide YY, changing the size of adipose cell, decreasing the lipogenic activity and inflammation, increasing the lipolysis and β-oxyanion adipose cell, as well as increasing the concentrate of brain-derived neutrophil factor in a brain. To increase the bioavailability of ASN, it has to be done the encapsulation with liposome base.  Modality is packaged in the dry jelly form with pectin base as a formulation in powder form taken orally. The modality consumption is 24 mg/kg of weight, however, after eating, the obese people tend to give the weight decreasing effect and cross section attractive to target modalities.

Conclusion: According to the studies, the ASN from purple sweet potato and package in Pectin-Based Dry Jelly could be used as a novel strategy in managing the pediatric obesity.


  1. Xu S, Xue Y. Pediatric obesity: causes, symptoms, prevention and treatment. Exp Ther Med. 2016;11(1):15-20.
  2. Badan Penelitian dan Pengembangan Kesehatan KKRI. Laporan hasil riset kesehatan dasar (riskesdas) Indonesia tahun 2013. Jakarta: CV Kiat Nusa; 2014:1-306.
  3. World Health Organization. Prevalence of overweight and obesity in children and adolescents. 2009 [Accessed January 15, 2019]. [Available at:].
  4. WHO. Prioritizing areas for action in the field of population-based prevention of childhood obesity. Geneva: WHO; 2012 [Accessed January 15, 2019]. [Available at:].
  5. Nevill AM, Bryant E, Wilkinson K, Gomes TN, Chaves R, Pereira S, et al. Can waist circumference provide a new “third†dimension to BMI when predicting percentage body fat in children? Insights using allometric modelling. Pediatr Obes. 2018;14(4):e12491:1-8.
  6. Simmonds M, Llewellyn A, Owen CG, Woolacott N. Predicting adult obesity from childhood obesity: a systematic review and meta-analysis. Obes Rev. 2016;17(2):95-107.
  7. Aktar N, Qureshi NK, Ferdous HS. Obesity: a review of pathogenesis and management strategies in adult. Delta Med Coll J. 2017;5(1):35-48.
  8. Handayani O, Rahayu T, Budiono I, Fauzi L, Siyam N, Macdonald N, et al. Health promotion models to reduce childhood obesity in elementary school: a comparison study between Indonesia and Australia. J Sci Res Reports. 2015;7(1):1-10.
  9. Lagerros YT, Rössner S. Obesity management: what brings success? Therap Adv Gastroenterol. 2013;6(1):77-88.
  10. Staiano AE, Gonugunta N, Drazba KT. Childhood obesity treatment. Pennington Biomedical Research Centre; 2014. [Accessed January 15, 2019]. [Available at:
  12. Mennella JA, Roberts K, Mathew PS, Reed DR. Children's perceptions about medicines: individual differences and tastes. BMC Pediatr. 2015;15:130.
  13. Martin C, Li J. Medicine is not health care, food is health care: plant metabolic engineering, diet and human health. New Phytol. 2017;216(3):699-719.
  14. Tensiska T, Marta H, Cahyana Y, Amirah NS. Application of encapsulated anthocyanin pigments from purple sweet potato (Ipomoea batatas L.) in jelly drink. KnE Life Sci. 2017;2:482-493
  15. Badan Pusat Statistik. Produksi Ubi Jalar Menurut Provinsi (ton), 1993-2015. 2015. [Accessed January 15, 2019]. [Available at:]
  16. Esatbeyoglu T, Rodríguez-Werner M, Schlösser A, Winterhalter P, Rimbach G. Fractionation, enzyme inhibitory and cellular antioxidant activity of bioactives from purple sweet potato (Ipomoea batatas). Food Chem. 2017;221:447-456.
  17. Ramdath DD, Padhi E, Hawke A, Sivaramalingam T, Tsao R. The glycemic index of pigmented potatoes is related to their polyphenol content. Food Funct. 2014;5(5):909-15.
  18. Ju J-H, Yoon H-S, Park H-J, Kim M-Y, Shin H-K, Park K-Y, et al. Anti-obesity and antioxidative effects of purple sweet potato extract in 3T3-L1 adipocytes in vitro. J Med Food. 2011;14(10):1097-106.
  19. Freemark M. Pediatric obesity: etiology, pathogenesis and treatment. 2nd edition. Switzerland: Springer Nature; 2018. h. 1-793.
  20. Zhuang J, Lu J, Wang X, Hu W, Hong F, Zhao X, et al. Purple sweet potato color protects against high-fat diet-induced cognitive deficits through AMPK-mediated autophagy in mouse hippocampus. J Nutr Biochem. 2019;65:35-45.
  21. Mignet N, Seguin J, Chabot GG. Bioavailability of Polyphenol Liposomes: A Challenge Ahead. Pharmaceutics. 2013;5(3):457-71.
  22. Kakino Y, Hishikawa Y, Onodera R, Tahara K, Takeuchi H. Gelation factors of pectin for development of a powder form of gel, dry jelly, as a novel dosage form. Chem Pharm Bull (Tokyo). 2017;65(11):1035-1044.
  23. Khoo HE, Azlan A, Tang ST, Lim SM. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res. 2017;61(1):1361779.
  24. Cheeseman MA. Artificial food color additives and child behavior. Environ Health Perspect. 2012;120(1):A15-6.
  25. Maffeis C, Surano MG, Cordioli S, Gasperotti S, Corradi M, Pinelli L. A high-fat vs. A moderate-fat meal in obese boys: nutrient balance, appetite, and gastrointestinal hormone changes. Obesity (Silver Spring). 2010;18(3):449-455.
  26. Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS, et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med. 2003;349(10):941-948.
  27. Mittelman SD, Klier K, Braun S, Azen C, Geffner ME, Buchanan TA. Obese adolescents show impaired meal responses of the appetite-regulating hormones ghrelin and PYY. Obesity (Silver Spring). 2010;18(5):918-925.
  28. Mojbafan M, Afsartala Z, Amoli MM, Mahmoudi M, Yaghmaei P, Larijani B, et al. Liver alpha-amylase gene expression as an early obesity biomarker. Pharmacol Rep. 2017;69(2):229-34.
  29. Adamska E, Ostrowska L, Górska M, Krętowski A. The role of gastrointestinal hormones in the pathogenesis of obesity and type 2 diabetes. Gastroenterol Rev. 2014;9(2):69-76.
  30. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402(6762):656-660.
  31. Adrian TE, Ferri GL, Bacarese-Hamilton AJ, Fuessl HS, Polak JM, Bloom SR. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology. 1985;89(5):1070-1077.
  32. Gautier JF, Choukem S-P, Girard J. Physiology of incretins (GIP and GLP-1) and abnormalities in type 2 diabetes. Diabetes Metab. 2008;34 Suppl 2:S65-72.
  33. Klöting N, Blüher M. Adipocyte dysfunction, inflammation and metabolic syndrome. Rev Endocr Metab Disord. 2014;15(4):277-287.
  34. Amano SU, Cohen JL, Vangala P, Tencerova M, Nicoloro SM, Yawe JC, et al. Local proliferation of macrophages contributes to obesity-associated adipose tissue inflammation. Cell Metab. 2014;19(1):162-171.
  35. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117(1):175-184.
  36. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796-1808.
  37. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid–induced insulin resistance. J Clin Invest. 2006;116(11):3015-3025.
  38. Rutkowski JM, Stern JH, Scherer PE. The cell biology of fat expansion. J Cell Biol. 2015;208(5):501-512.
  39. Saponaro C, Gaggini M, Carli F, Gastaldelli A. The subtle balance between lipolysis and lipogenesis: a critical point in metabolic homeostasis. Nutrients. 2015;7(11):9453-9474.
  40. Dentin R, Pégorier JP, Benhamed F, Foufelle F, Ferre P, Fauveau V, et al. Hepatic glucokinase is required for the synergistic action of chrebp and srebp-1c on glycolytic and lipogenic gene expression. J Biol Chem. 2004;279(19):20314-20326.
  41. Haliloglu B, Bereket A. Hypothalamic obesity in children: pathophysiology to clinical management. J Pediatr Endocrinol Metab. 2015;28(5-6):503-513.
  42. Wardlaw SL. Hypothalamic proopiomelanocortin processing and the regulation of energy balance. Eur J Pharmacol. 2011;660(1):213-219.
  43. Bray GA, Inoue S, Nishizawa Y. Hypothalamic obesity. The autonomic hypothesis and the lateral hypothalamus. Diabetologia. 1981;20 Suppl:366-377.
  44. Wicaksono LA, Widyaningsih TD, Yunianta. Anthocyanin extraction from purple sweet potato cultivar antin-3 (Ipomoea batatas L.) using maceration, microwave assisted extraction, ultrasonic assisted extraction and their application as anti-hyperglycemic agents in alloxan-induced wistar rats. International Journal of PharmTech Research. 2016;9(3):181-92.
  45. Jufri M. Arah dan perkembangan liposome drugs delivery systems. Majalah Ilmu Kefarmasian. 2004;1(2):59-68.
  46. Zhao L, Temelli F, Chen L. Encapsulation of anthocyanin in liposomes using supercritical carbon dioxide: Effects of anthocyanin and sterol concentrations. J Funct Foods. 2017;34:159-167.
  47. Bryła A, Lewandowicz G, Juzwa W. Encapsulation of elderberry extract into phospholipid nanoparticles. J Food Eng. 2015;167(B):189-195.
  48. Hwang JM, Kuo HC, Lin CT, Kao ES. Inhibitory effect of liposome-encapsulated anthocyanin on melanogenesis in human melanocytes. Pharm Biol. 2013;51(8):941-947.
  49. de los Monteros LAGE, Robles Ramirez M del C, Mora R. Soybean and Obesity. In: Soybean - Biochemistry, Chemistry and Physiology. InTech; 2011.
  50. Mourad AM, de Carvalho Pincinato E, Mazzola PG, Sabha M, Moriel P. Influence of soy lecithin administration on hypercholesterolemia. Cholesterol. 2010;2010:824813.
  51. Toita R, Kawano T, Murata M, Kang JH. Anti-obesity and anti-inflammatory effects of macrophage-targeted interleukin-10-conjugated liposomes in obese mice. Biomaterials. 2016;110:81-88.
  52. Schratter G, Karbiener M, Almer G, Mangge H, Scheideler M, Prassl R. Liposomes for microRNA delivery to human adipocytes. Atherosclerosis. 2016;252:e131.
  53. Saffoon N, Uddin R, Huda HN, Sutradhar BK. Enhancement of Oral Bioavailability and Solid Dispersion: A Review. J Appl Pharm Sci. 2011;1(7):13-20.
  54. Burin VM, Rossa PN, Ferreira-Lima NE, Hillmann MCR, Boirdignon-Luiz MT. Anthocyanins: optimisation of extraction from Cabernet Sauvignon grapes, microcapsulation and stability in soft drink. Int J Food Sci Technol. 2011;46(1):186-193.
  55. Wu T, Jiang Z, Yin J, Long H, Zheng X. Anti-obesity effects of artificial planting blueberry (Vaccinium ashei) anthocyanin in high-fat diet-treated mice. Int J Food Sci Nutr. 2016;67(3):257-264.
  56. Hwang J-M, Kuo H-C, Lin C-T, Kao E-S. Inhibitory effect of liposome-encapsulated anthocyanin on melanogenesis in human melanocytes. Pharm Biol. 2013;51(8):941-947.
  57. Fernandes I, de Freitas V, Reis C, Mateus N. A new approach on the gastric absorption of anthocyanins. Food Funct. 2012;3(5):508-16.
  58. Matuschek MC, Hendriks WH, McGhie TK, Reynolds GW. The jejunum is the main site of absorption for anthocyanins in mice. J Nutr Biochem. 2006;17(1):31-36.
  59. Pojer E, Mattivi F, Johnson D, Stockley CS. The case for anthocyanin consumption to promote human health: a review. Compr Rev Food Sci Food Saf. 2013;12(5):483-508.
  60. Manach C, Williamson G, Morand C, Scalbert A, Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 2005;81(1 Suppl):230S-242S.
  61. Kay CD. Aspects of anthocyanin absorption, metabolism and pharmacokinetics in humans. Nutr Res Rev. 2006;19(1):137-46.
  62. Ziberna L, Tramer F, Moze S, Vrhovsek U, Mattivi F, Passamonti S. Transport and bioactivity of cyanidin 3-glucoside into the vascular endothelium. Free Radic Biol Med. 2012;52(9):1750-1759.
  63. Vanzo A, Scholz M, Gasperotti M, Tramer F, Passamonti S, Vhrovsek U, et al. Metabonomic investigation of rat tissues following intravenous administration of cyanidin 3-glucoside at a physiologically relevant dose. Metabolomics. 2013;9(1):88-100.
  64. Sakakibara H, Ogawa T, Koyanagi A, Kobayashi S, Goda T, Kumazawa S, et al. Distribution and excretion of bilberry anthocyanins in mice. J Agric Food Chem. 2009;57(1):7681-7686.
  65. Passamonti S, Vrhovsek U, Vanzo A, Mattivi F. Fast access of some grape pigments to the brain. J Agric Food Chem. 2005;53(18):7029-7034.
  66. Hribar U, Ulrih NP. The metabolism of anthocyanins. Curr Drug Metab. 2014;15(1):3-13.
  67. Vanzo A, Terdoslavich M, Brandoni A, Torres AM, Vrhovsek U, Passamonti S. Uptake of grape anthocyanins into the rat kidney and the involvement of bilitranslocase. Mol Nutr Food Res. 2008;52(10):1106-1116.
  68. Del Bò C, Ciappellano S, Klimis-Zacas D, Martini D, Gardana C, Riso P, et al. Anthocyanin absorption, metabolism, and distribution from a wild blueberry-enriched diet (Vaccinium angustifolium) is affected by diet duration in the Sprague−Dawley rat. J Agric Food Chem. 2010;58(4):2491-2497.
  69. Kato M, Tani T, Terahara N, Tsuda T. The Anthocyanin Delphinidin 3-Rutinoside Stimulates Glucagon-Like Peptide-1 Secretion in Murine GLUTag Cell Line via the Ca2+/Calmodulin-Dependent Kinase II Pathway. PLoS One. 2015;10(5):e0126157.
  70. Badshah H, Ullah I, Kim SE, Kim T, Lee HY, Kim MO. Anthocyanins attenuate body weight gain via modulating neuropeptide Y and GABAB1 receptor in rats hypothalamus. Neuropeptides. 2013;47(5):347-353.
  71. Jang HH, Kim HW, Kim SY, Kim SM, Kim JB, Lee YM. In vitro and in vivo hypoglycemic effects of cyanidin 3-caffeoyl-p-hydroxybenzoylsophoroside-5-glucoside, an anthocyanin isolated from purple-fleshed sweet potato. Food Chem. 2019;272:688-693.
  72. Mundi MS, Karpyak M V, Koutsari C, Votruba SB, O’Brien PC, Jensen MD. Body fat distribution, adipocyte size, and metabolic characteristics of nondiabetic adults. J Clin Endocrinol Metab. 2010;95(1):67-73.
  73. Talavéra S, Felgines C, Texier O, Besson C, Gil-Izquierdo A, Lamaison JL, et al. Anthocyanin metabolism in rats and their distribution to digestive area, kidney, and brain. J Agric Food Chem. 2005;53(10):3902-3908.
  74. Maekawa F, Fujiwara K, Toriya M, et al. Brain-derived neurotrophic factor in VMH as the causal factor for and therapeutic tool to treat visceral adiposity and hyperleptinemia in type 2 diabetic Goto–Kakizaki rats. Front Synaptic Neurosci. 2013;5:7.

How to Cite

Mahardani, P. N. T. Y., Kesumaputri, K. D. K., Wiguna, I. G. W. W., & Wati, D. K. (2020). Encapsulated liposome toward anthocyanin in Pectin-Based Dry Jelly as a management in pediatric obesity Management: a literature review. Intisari Sains Medis, 11(1), 153–159.




Search Panel

Putu Nandika Tungga Yudanti Mahardani
Google Scholar
ISM Journal

Komang Diah Kurnia Kesumaputri
Google Scholar
ISM Journal

I Gede Wikania Wira Wiguna
Google Scholar
ISM Journal

Dyah Kanya Wati
Google Scholar
ISM Journal