Skip to main content Skip to main navigation menu Skip to site footer

Microbiota-based therapies for chronic kidney disease


Background: Increasing prevalence of chronic kidney disease (CKD) worldwide has been concerned as a global public health issue because of the burden of adverse outcomes, including mortality. Gut microbiota can be used as a potential therapeutic target to slow the progression of CKD.

Aim: This literature review aims to provide an in-depth review about the potency of microbiota-based therapy for CKD.

Method: from 58 journals reviewed, 51 were found suitable as references for this paper. The keywords used are “gut microbiota,†“chronic kidney diseaseâ€, “prebioticâ€, “probiotic†and “fecal microbiota transplantation†on selected search engines.

Result: In general, it has shown that microbiota-based therapies do have potential therapeutic effect as it can improve inflammatory response, uremic toxin, insulin resistance and cardiovascular risk.

Conclusion: Prebiotic, probiotic, fecal microbiota transplantation and novel therapies have shown beneficial effects in treating patients with CKD.


  1. Stats F. National Chronic Kidney Disease Fact Sheet , 2017 CKD Is Common Among Adults in the United States by controlling your blood. 2017;1–4.
  2. Ckd DOF, Graded N. Chapter 1: Definition and classification of CKD. Kidney Int Suppl [Internet]. 2013;3(1):19–62. Available from:
  3. Breyer MD, Susztak K. The next generation of therapeutics for chronic kidney disease. Nat Rev Drug Discov [Internet]. 2016;15(8):568–88. Available from:
  4. Penelitian B, Pengembangan DAN. RISET KESEHATAN DASAR. 2013;
  5. Minutolo R, Lapi F, Chiodini P, Simonetti M, Bianchini E, Pecchioli S, et al. Article Risk of ESRD and Death in Patients with CKD Not Referred to a Nephrologist : A 7-Year Prospective Study. 2014;9.
  6. Kidney N, Kidney F, Outcomes D, Initiative Q, Kdoqi NKF, Report AD, et al. CKD in the United States : An Overview of the USRDS Annual Data Report, Volume 1. 2015;1:1–10.
  7. Campbell D, Weir MR. Defining, Treating, and Understanding Chronic Kidney Disease — A Complex Disorder. 2015;17(7).
  8. Drawz PE, Rosenberg ME. Slowing progression of chronic kidney disease. 2013;3(4):372–6.
  9. Poesen R, Meijers B, Evenepoel P. The Colon: An Overlooked Site for Therapeutics in Dialysis Patients. Semin Dial. 2013;26(3):323–32.
  10. Al Khodor S, Shatat IF. Gut microbiome and kidney disease: a bidirectional relationship. Pediatr Nephrol. 2017;32(6):921–31.
  11. Walker AW, Duncan SH, Louis P, Flint HJ. Phylogeny, culturing, and metagenomics of the human gut microbiota. Trends Microbiol [Internet]. 2014;22(5):267–74. Available from:
  12. Sabatino A, Regolisti G, Brusasco I, Cabassi A, Morabito S, Fiaccadori E. Alterations of intestinal barrier and microbiota in chronic kidney disease. Nephrol Dial Transplant. 2015;30(6):924–33.
  13. Ramezani A, Raj DS. The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol [Internet]. 2014;25(4):657–70. Available from:
  14. Felizardo RJF, Castoldi A, Andrade-Oliveira V, Camara NOS. The microbiota and chronic kidney diseases: a double-edged sword. Clin Transl Immunol. 2016;5(6):e86.
  15. Vaziri ND, Wong J, Pahl M, Piceno YM, Yuan J, Desantis TZ, et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int [Internet]. 2013;83(2):308–15. Available from:
  16. Poesen R, Evenepoel P, de Loor H, Kuypers D, Augustijns P, Meijers B. Metabolism, Protein Binding, and Renal Clearance of Microbiota-Derived p-Cresol in Patients with CKD. Clin J Am Soc Nephrol [Internet]. 2016;11:1–9. Available from:
  17. Wong J, Piceno YM, DeSantis TZ, Pahl M, Andersen GL, Vaziri ND. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am J Nephrol. 2014;39(3):230–7.
  18. Lin C-J, Wu C-J, Wu P-C, Pan C-F, Wang T-J, Sun F-J, et al. Indoxyl Sulfate Impairs Endothelial Progenitor Cells and Might Contribute to Vascular Dysfunction in Patients with Chronic Kidney Disease. Kidney Blood Press Res. 2016;41(6):1025–36.
  19. Lau WL, Kalantar-Zadeh K, Vaziri ND. The Gut as a Source of Inflammation in Chronic Kidney Disease. Nephron. 2015;130(2):92–8.
  20. Nallu A, Sharma S, Ramezani A, Muralidharan J, Raj D. Gut microbiome in chronic kidney disease: challenges and opportunities. Transl Res [Internet]. 2017;179:24–37. Available from:
  21. Tang WHW, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B, et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both developments of renal insufficiency and mortality risk in chronic kidney disease. Circ Res. 2015;116(3):448–55.
  22. Wang F, Zhang P, Jiang H, Cheng S. Gut bacterial translocation contributes to microinflammation in experimental uremia. Dig Dis Sci. 2012;57(11):2856–62.
  23. Wang F, Jiang H, Shi K, Ren Y, Zhang P, Cheng S. Gut bacterial translocation is associated with microinflammation in end-stage renal disease patients. Nephrology. 2012;17(8):733–8.
  24. Daniell H. NIH Public Access. Examining Assoc Circ Endotoxin with Nutr Status, Inflamm Mortal Hemodial Patients. 2012;76(October 2009):211–20.
  25. Perry RJ, Samuel VT, Petersen KF, Shulman GI, Haven N, Haven N. HHS Public Access. Mol Mech Insul Resist Chronic Kidney Dis. 2015;510(7503):84–91.
  26. Koppe L, Pillon NJ, Vella RE, Croze ML, Pelletier CC, Chambert S, et al. p-Cresyl sulfate promotes insulin resistance associated with CKD. J Am Soc Nephrol [Internet]. 2013;24(1):88–99. Available from:
  27. Tang WHW, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal Microbial Metabolism of Phosphatidylcholine and Cardiovascular Risk. N Engl J Med [Internet]. 2013;368(17):1575–84. Available from:
  28. Moraes C, Fouque D, Amaral ACF, Mafra D. Trimethylamine N-Oxide From Gut Microbiota in Chronic Kidney Disease Patients: Focus on Diet. J Ren Nutr [Internet]. 2015;25(6):459–65. Available from:
  29. Xu K-Y, Xia G-H, Lu J-Q, Chen M-X, Zhen X, Wang S, et al. Impaired renal function and dysbiosis of gut microbiota contribute to increased trimethylamine-N-oxide in chronic kidney disease patients. Sci Rep [Internet]. 2017;7(1):1445. Available from:
  30. Andrade-Oliveira V, Amano MT, Correa-Costa M, Castoldi A, Felizardo RJF, de Almeida DC, et al. Gut Bacteria Products Prevent AKI Induced by Ischemia-Reperfusion. J Am Soc Nephrol [Internet]. 2015;26(8):1877–88. Available from:
  31. Vaziri ND, Liu SM, Lau WL, Khazaeli M, Nazertehrani S, Farzaneh SH, et al. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease. PLoS One. 2014;9(12):1–15.
  32. Meijers BKI, De Preter V, Verbeke K, Vanrenterghem Y, Evenepoel P. P-Cresyl sulfate serum concentrations in haemodialysis patients are reduced by the prebiotic oligofructose-enriched inulin. Nephrol Dial Transplant. 2010;25(1):219–24.
  33. Krishnamurthy VMR, Wei G, Baird BC, Murtaugh M, Chonchol MB, Raphael KL, et al. High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease. 2011;81(3):300–6.
  34. Sirich TL, Plummer NS, Gardner CD, Hostetter TH, Meyer TW. Effect of increasing dietary fiber on plasma levels of colon-derived solutes in hemodialysis patients. Clin J Am Soc Nephrol. 2014;9(9):1603–10.
  35. Salmean YA, Segal MS, Palii SP, Dahl WJ. Fiber supplementation lowers plasma p-cresol in chronic kidney disease patients. J Ren Nutr [Internet]. 2015;25(3):316–20. Available from:
  36. Chen ML, Yi L, Zhang Y, Zhou X, Ran L, Yang J, et al. Resveratrol attenuates trimethylamine-N-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. MBio. 2016;7(2):1–14.
  37. Koppe L, Mafra D, Fouque D. Probiotics and chronic kidney disease. Kidney Int [Internet]. 2015;88(5):1–9. Available from:
  38. Dehghani H, Heidari F, Mozaffari-khosravi H, Nouri-majelan N, Dehghani A. Synbiotic Supplementations for Azotemia in Patients With Chronic Kidney Disease A Randomized Controlled Trial. 2016;
  39. Guida B, Germanò R, Trio R, Russo D, Memoli B, Grumetto L, et al. Effect of short-term synbiotic treatment on plasma p-cresol levels in patients with chronic renal failure: a randomized clinical trial. Nutr Metab Cardiovasc Dis. 2014;
  40. Fang C, Lu J, Chen B, Wu C, Chen Y, Chen M. Selection of uremic toxin-reducing probiotics in vitro and in vivo. J Funct Foods. 2014;7(50):407–15.
  41. Akoglu B, Loytved A, Nuiding H, Zeuzem S, Faust D. Probiotic Lactobacillus casei Shirota improves kidney function, inflammation and bowel movements in hospitalized patients with acute gastroenteritis – A prospective study. J Funct Foods [Internet]. 2015;17(August 2015):305–13. Available from:
  42. Dong H, Rowland I, Thomas L V., Yaqoob P. Immunomodulatory effects of a probiotic drink containing Lactobacillus casei Shirota in healthy older volunteers. Eur J Nutr. 2013;52(8):1853–63.
  43. Reale M, Boscolo P, Bellante V, Tarantelli C, Di Nicola M, Forcella L, et al. Daily intake of Lactobacillus casei Shirota increases natural killer cell activity in smokers. Br J Nutr. 2012;108:308–14.
  44. Miranda Alatriste PV, Urbina Arronte R, Gómez Espinosa CO, Espinosa Cuevas MDLÃ. Effect of probiotics on human blood urea levels in patients with chronic renal failure. Nutr Hosp [Internet]. 2014;29(3):582–90. Available from:
  45. Kelly CR, Kahn S, Kashyap P, Laine L, Rubin D, Atreja A, et al. Update on Fecal Microbiota Transplantation 2015: Indications, Methodologies, Mechanisms, and Outlook. Gastroenterology [Internet]. 2015;149(1):223–37. Available from:
  46. Smits LP, Bouter KEC, De Vos WM, Borody TJ, Nieuwdorp M. Therapeutic potential of fecal microbiota transplantation. Gastroenterology [Internet]. 2013;145(5):946–53. Available from:
  47. Hansen JJ, Sartor RB. Therapeutic Manipulation of the Microbiome in IBD: Current Results and Future Approaches HHS Public Access. Curr Treat Options Gastroenterol. 2015;13(1):105–20.
  48. Gen S, Nobe K, Ikeda N. Lubiprostone, a novel laxative, might improve hyperphosphatemia without water dilution. Ren Replace Ther [Internet]. 2016;2(1):50. Available from:
  49. Mishima E, Fukuda S, Shima H, Hirayama A, Akiyama Y, Takeuchi Y, et al. Alteration of the Intestinal Environment by Lubiprostone Is Associated with Amelioration of Adenine-Induced CKD. J Am Soc Nephrol [Internet]. 2015;26(8):1787–94. Available from:
  50. Papageorgiou N, Zacharia E, Briasoulis A, Charakida M, Tousoulis D. Celecoxib for the treatment of atherosclerosis. Non-lethal Inhib gut Microb trimethylamine Prod Treat Atheroscler [Internet]. 2016;25(5):619–33. Available from:
  51. Chen K, Zheng X, Feng M, Li D, Zhang H. Gut microbiota-dependent metabolite Trimethylamine N-oxide contributes to cardiac dysfunction in western diet-induced obese mice. Front Physiol. 2017;8(MAR):1–9.

How to Cite

Putri, D. N. A., & Moreen Nababan, C. C. (2019). Microbiota-based therapies for chronic kidney disease. Intisari Sains Medis, 10(1).




Search Panel

Dessy Natasha Ade Putri
Google Scholar
ISM Journal

Chika Christianne Moreen Nababan
Google Scholar
ISM Journal