Skip to main content Skip to main navigation menu Skip to site footer

Peran Kunci cGAS dan Trex1 dalam Modulasi Respon Imun Terhadap Radiasi

Abstract

Background: The immune response to tumors triggered by radiation is a complex phenomenon involving interactions between various immune system components and cellular molecules. The cGAS (Cyclic GMP-AMP Synthase) and Trex1 (Three-prime Repair Exonuclease 1) genes play important roles in detecting and responding to radiation-induced DNA damage, through the cGAS-STING pathway and the dsDNA degradation mechanism, respectively. This study discusses the critical role of cGAS and Trex1 in modulating the immune response to radiation.

Methods: This study is an observational literature review that summarizes meta-analysis studies, systematic observations, randomized clinical trials, observational studies, and case reports regarding the role of cGAS and Trex1 in radiation-induced immune responses. The search study was conducted on online databases published up to 2023.

Results: cGAS recognizes dsDNA in the cytosol and triggers an innate immune response through the production of cGAMP, which activates the adapter protein STING, causing the expression of proinflammatory cytokines. In contrast, Trex1 functions to eliminate DNA fragments, reducing excessive stimulation of the cGAS-STING pathway, which is important for avoiding autoimmune responses and increasing the efficacy of anti-tumor therapy. Research shows that radiation dose fractionation affects the activation and efficacy of this immune response, with certain doses and fractionation schemes increasing Trex1 expression and influencing the immune response to tumor cells which can have local and systemic impacts in the form of abscopal effects.

Conclusion: The interaction between the cGAS and Trex1 genes plays an important role in regulating the immune response to DNA damage induced by radiation. Through activation of the cGAS-STING pathway and modulation by Trex1, radiation therapy not only damages cancer cell DNA but also triggers an immune response that can enhance tumor amplification.

 

Latar belakang: Respon imun terhadap tumor yang terpicu oleh radiasi merupakan fenomena kompleks yang melibatkan interaksi antara berbagai komponen sistem imun dan molekul seluler. Gen cGAS (Cyclic GMP-AMP Synthase) dan Trex1 (Three-prime Repair Exonuclease 1) memainkan peranan kritis dalam mendeteksi dan merespon kerusakan DNA yang diinduksi oleh radiasi, melalui pathway cGAS-STING dan mekanisme degradasi dsDNA, masing-masing. Penelitian ini membahas mengenai peran kunci cGAS dan Trex1 dalam modulasi respon imun terhadap radiasi.

Metode: Studi ini adalah studi tinjauan pustaka yang memuat rangkuman studi meta analisis, tinjauan sistematis, uji klinis acak, studi observasional dan laporan kasus terkait peran cGAS dan Trex1 dalam respon imun terpicu radiasi. Pencarian studi dilakukan pada basis data online yang terpublikasi hingga tahun 2023.

Hasil: cGAS mengenali dsDNA di sitosol dan memicu respon imun innate melalui produksi cGAMP, yang mengaktifkan protein adaptor STING, menyebabkan ekspresi sitokin proinflamasi. Sebaliknya, Trex1 berfungsi untuk mengeliminasi fragmen DNA, mengurangi stimulasi berlebihan dari pathway cGAS-STING, yang penting untuk menghindari respon autoimun dan meningkatkan efikasi terapi anti-tumor. Penelitian menunjukkan bahwa fraksinasi dosis radiasi mempengaruhi aktivasi dan efikasi respon imun ini, dengan dosis dan skema fraksinasi tertentu meningkatkan ekspresi Trex1 dan mempengaruhi respon imun terhadap sel tumor yang bisa berdampak secara local maupun secara sistemik berupa abscopal effect.

Simpulan: Interaksi antara gen cGAS dan Trex1 memegang peran penting dalam mengatur respon imun terhadap kerusakan DNA yang diinduksi oleh radiasi. Melalui aktivasi jalur cGAS-STING dan modulasi oleh Trex1, terapi radiasi tidak hanya merusak DNA sel kanker tetapi juga memicu respon imun yang dapat memperkuat penghancuran tumor.

References

  1. Hopfner KP, Hornung V. Molecular mechanisms and cellular functions of cGAS–STING signalling. Nat Rev Mol Cell Biol. 2020;21(9):501–521.
  2. MacKenzie KJ, Carroll P, Martin CA, Murina O, Fluteau A, Simpson DJ, et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nat 2017 5487668 [Internet]. 2017;548(7668):461–465.
  3. Wan D, Jiang W, Hao J. Research Advances in How the cGAS-STING Pathway Controls the Cellular Inflammatory Response. Front Immunol. 2020;11(1):523507.
  4. Motwani M, Pesiridis S, Fitzgerald KA. DNA sensing by the cGAS–STING pathway in health and disease. Nat Rev Genet. 2019;20(11):657–674.
  5. Zhang X, Bai X chen, Chen ZJ. Structures and Mechanisms in the cGAS-STING Innate Immunity Pathway [Internet]. Immunity; 2020;53(1):43–53.
  6. Simpson SR, Hemphill WO, Hudson T, Perrino FW. TREX1 – Apex predator of cytosolic DNA metabolism. DNA Repair (Amst). 2020;94(1):102894.
  7. Wu CC, Peng SSF, Lee WT. Intracerebral large artery disease in Aicardi-Goutières syndrome with TREX1 mutation: a case report. Neurol Sci. 2020;41(11):3353–3356.
  8. Hosseini SA, Labilloy A. Genetics, TREX1 Mutations. StatPearls [Internet]. 2019. Accessed on: 4th August 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK544289/
  9. Wang Q, Du J, Hua S, Zhao K. TREX1 plays multiple roles in human diseases. Cell Immunol. 2022;375(1):104527.
  10. Jeong H, Bok S, Hong BJ, Choi HS, Ahn GO. Radiation-induced immune responses: Mechanisms and therapeutic perspectives. Blood Research. Korean Society of Hematology. 2016;51(1):157–163.
  11. Yang CA, Huang HY, Chang YS, Lin CL, Lai IL, Chang JG. DNA-Sensing and Nuclease Gene Expressions as Markers for Colorectal Cancer Progression. Oncology. 2017;92(2):115–124.
  12. Murphy K, Weaver C. Janeway’s Immunology 9th Edition. America. 2017.
  13. Gondhowiardjo SA, Handoko, Jayalie VF, Apriantoni R, Barata AR, Senoaji F, et al. Tackling resistance to cancer immunotherapy: What do we know?. Molecules. MDPI AG. 2020;25(1):4096.
  14. Yilmaz MT, Elmali A, Yazici G. Abscopal Effect, From Myth to Reality: From Radiation Oncologists’ Perspective. Cureus. 2019;11(1):e3860.
  15. Siva S, MacManus MP, Martin RF, Martin OA. Abscopal effects of radiation therapy: A clinical review for the radiobiologist. Cancer Lett. 2015;356(1):82–90.
  16. Alfonso JCL, Papaxenopoulou LA, Mascheroni P, Meyer-Hermann M, Hatzikirou H. On the Immunological Consequences of Conventionally Fractionated Radiotherapy. iScience. 2020;23(3):100897.
  17. Yan N. Immune diseases associated with TREX1 and STING dysfunction. J Interf Cytokine Res. 2017;37(5):198–206.
  18. Kavanagh D, Spitzer D, Kothari PH, Shaikh A, Liszewski MK, Richards A, et al. New roles for the major human 3′-5′ exonuclease TREX1 in human disease. Cell Cycle. 2008;7(12):1718–1725.
  19. Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond JM, Schneider RJ, et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun. 2017;8(1):15618.
  20. Vanpouille-Box C, Formenti SC, Demaria S. TREX1 dictates the immune fate of irradiated cancer cells. Oncoimmunology. 2017;6(9):e1339857.
  21. Zhou W, Mohr L, Maciejowski J, Kranzusch PJ. cGAS phase separation inhibits TREX1-mediated DNA degradation and enhances cytosolic DNA sensing. Mol Cell. 2021;81(4):739-755.
  22. Juricic P, Ablasser A. The spatial organization of cGAS-TREX1 interactions. Dev Cell. 2021;56(7):876–877.
  23. van Leeuwen CM, Oei AL, Crezee J, Bel A, Franken NAP, Stalpers LJA, et al. The alfa and beta of tumours: A review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies. Radiation Oncology. 2018;13(1):1-11.
  24. Reits EA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley EK, et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. 2006;203(5):1259-1271.
  25. Diamond JM, Vanpouille-Box C, Spada S, Rudqvist NPP, Chapman JR, Ueberheide BM, et al. Exosomes Shuttle TREX1-Sensitive IFN-Stimulatory dsDNA from Irradiated Cancer Cells to DCs. Cancer Immunol Res. 2018;6(8):910–920.
  26. Wiranata S, Adiputra PAT, Lestari AAW, Prabawa IPY, Supadmanaba IGP. Platelet Lymphocyte Ratio (PLR) Related with Clinicopathological Characteristics of Balinese Women Breast Cancer Patient. Annals of Oncology. 2019;30:vi144.

How to Cite

Rafli, R., Harahap, W. A., Gondhowiardjo, S., & Ekaputra, A. (2024). Peran Kunci cGAS dan Trex1 dalam Modulasi Respon Imun Terhadap Radiasi. Intisari Sains Medis, 15(1), 319–324. https://doi.org/10.15562/ism.v15i1.1972

HTML
0

Total
0

Share

Search Panel

Rhandyka Rafli
Google Scholar
Pubmed
ISM Journal


Wirsma Arif Harahap
Google Scholar
Pubmed
ISM Journal


Soehartati Gondhowiardjo
Google Scholar
Pubmed
ISM Journal


Andani Ekaputra
Google Scholar
Pubmed
ISM Journal