Skip to main content Skip to main navigation menu Skip to site footer

Rokok elektrik dan tuberkulosis paru: sebuah tinjauan pustaka

  • I Desak Putu Agung Krisdanti ,
  • Adelia Ghosali ,

Abstract

Background: Currently, the use of e-cigarettes has become a concern for the scientific community to research the health effects of e-cigarettes, other unknown components of e-cigarettes, the lack of international policy regarding quality control of e-cigarette production, and the impact on non-smokers. e-cigarette users, or people who already smoke and become dual users (tobacco cigarettes and e-cigarettes). This literature review attempts to discuss the relationship between e-cigarettes and the incidence of pulmonary tuberculosis based on theoretical studies.

Methods: This literature review involves relevant literature on e-cigarettes and pulmonary tuberculosis. Different data sources or manual literature search methods were used to search for articles related to the literature topic.

Results: Nicotine in e-cigarettes can cause airway inflammation and increase the risk of susceptibility to bacterial infections, one of which is MTB infection. According to several studies, e-cigarette e-vapor interferes with the phagocytic function of THP-1 macrophages against MTB and is a promoter of pro-inflammatory responses. Cigarette smoke also affects phagocytic function and reduces effector cytokine responses (TNF-α, IL-1β, and IL-8).

Conclusion: E-cigarette smoke can affect phagocytic function and reduce effector cytokine responses (TNF-α, IL-1β, and IL-8), thereby increasing the risk of susceptibility to tuberculosis bacterial infection.

 

Latar Belakang: Dewasa ini penggunaan rokok elektrik telah menjadi perhatian oleh komunitas ilmiah untuk meneliti efek kesehatan dari rokok elektrik, komponen rokok elektrik lainnya yang belum diketahui pasti, rendahnya kebijakan internasional terkait kontrol kualitas dari produksi rokok elektrik, dan dampak pada orang yang bukan perokok menjadi pengguna rokok elektrik, atau pada orang yang sudah merokok menjadi dual-users (rokok tembakau dan rokok elektrik). Tinjauan pustaka ini mencoba membahas hubungan rokok elektrik dengan kejadian tuberkulosis paru berdasarkan kajian teoritis.

Metode: Tinjauan pustaka ini melibatkan literatur yang relevan tentang rokok elektrik dan tuberculosis paru. Sumber data yang berbeda atau metode pencarian literatur manual digunakan untuk mencari artikel yang berkaitan dengan topik literatur.

Hasil: Nikotin pada rokok elektrik dapat menyebabkan inflamasi saluran napas dan meningkatkan risiko kerentanan terhadap infeksi bakteri, salah satunya infeksi MTB. Menurut beberapa penelitian, e-vapor rokok elektrik mengganggu fungsi fagositik makrofag THP-1 terhadap MTB dan sebagai promotor respon proinflamasi. Asap rokok juga mempengaruhi fungsi fagositik dan mengurangi respons sitokin efektor (TNF-α, IL-1β, dan IL-8).

Simpulan: Asap rokok elektrik dapat mempengaruhi fungsi fagositik dan mengurangi respons sitokin efektor (TNF-α, IL-1β, dan IL-8) sehingga meningkatkan risiko kerentanan terhadap infeksi bakteri tuberkulosis.

References

  1. Department of Health U, Services H, for Disease Control C, Center for Chronic Disease Prevention N, Promotion H, on Smoking O. E-Cigarette Use Among Youth and Young Adults: A Report of the Surgeon General. 2016. [Accessed on: 11th January 2024] [Available from: www.cdc.gov/tobacco].
  2. Rebuli ME, Rose JJ, Noel A, Croft DP, Benowitz NL, Cohen AH, et al. The E-cigarette or Vaping Product Use–Associated Lung Injury Epidemic: Pathogenesis, Management, and Future Directions an Official American Thoracic Society Workshop Report. Ann Am Thorac Soc. 2023;20(1):1–17.
  3. Badan Pengawas Obat dan Makanan. Rokok Elektronik di Indonesia. 2017.
  4. King BA, Jones CM, Baldwin GT, Briss PA. The EVALI and Youth Vaping Epidemics — Implications for Public Health. New England Journal of Medicine. 2020;382(8):689–691.
  5. World Health Organization. WHO global report on trends in prevalence of tobacco use 2000-2025, Third Edition. 2019. [Accessed on: 11th January 2024] [Available from: http://apps.who.int/bookorders].
  6. World Health Organization. Global tuberculosis report 2021: TB deaths and incidence. Global tuberculosis report. 2021;13–14.
  7. Perhimpunan Dokter Paru Indonesia. Pedoman Diagnosis dan Penatalaksanaan di Indonesia. 2021.
  8. World Health Organization (WHO). Global Tuberculosis Report 2022. 2023. [Accessed on: 11th January 2024] [Available from: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022].
  9. Kementerian Kesehatan Republik Indonesia. Deteksi TBC Capai Rekor Tertinggi di Tahun 2022. 2023. [Accessed on 20th January 2024] [Available from: https://www.kemkes.go.id/id/rilis-kesehatan/deteksi-tbc-capai-rekor-tertinggi-di-tahun-2022].
  10. Quan DH, Kwong AJ, Hansbro PM, Britton WJ. No Smoke Without Fire: The Impact of Cigarette Smoking on The Immune Control of Tuberculosis. European Respiratory Review. European Respiratory Society. 2022;31(164):1-11.
  11. Javan MR, Jalali nezhad A ali, Shahraki S, Safa A, Aali H, Kiani Z. Cross-talk between the Immune System and Tuberculosis Pathogenesis; a Review with Emphasis on the Immune Based Treatment. International Journal of Basic Science in Medicine. 2016;1(2):40–47.
  12. Cicerán A, Stein R. Respiratory Immunity and The Rationale for Immunomodulation in the Prevention of Respiratory Tract Infections. 2016;4(1):27-33.
  13. Haydel SE. Haydel Lab Research. 2006. [Accessed on 20th January 2024] [Available from: https://www.public.asu.edu/~shaydel/research.html].
  14. de Martino M, Lodi L, Galli L, Chiappini E. Immune Response to Mycobacterium tuberculosis: A Narrative Review. Front Pediatry. 2019;7(1):350.
  15. Dheda K, Schwander SK, Zhu B, Van Zyl-Smit RN, Zhang Y. The immunology of tuberculosis: from bench to bedside. Respirology. 2010;15(3):433–450.
  16. Mortaz E, Varahram M, Farnia P, Bahadori M, Masjedi M. New Aspects in Immunopathology of Mycobacterium Tuberculosis. ISRN Immunology. 2012;28(2012):1–11.
  17. Centers for Disease Control and Prevention. E-Cigarette, or Vaping, Products Visual Dictionary. 2019.
  18. Gotts JE, Jordt SE, McConnell R, Tarran R. What are the Respiratory Effects of e-Cigarettes? The BMJ. BMJ Publishing Group. 2019;1(1):366.
  19. National Academies of Sciences, Engineering, and Medicine, Eaton DL, Kwan LY, Stratton K. Public Health Consequences of E-Cigarettes. 2022. [Accessed on: 20th January 2024] [Available from: https://www.ncbi.nlm.nih.gov/books/NBK507171/].
  20. Yaucher NE, Fish JT, Smith HW, Wells JA. Propylene Glycol-Associated Renal Toxicity from Lorazepam Infusion. Pharmacotherapy. 2003;23(9):1094–1099.
  21. Kalininskiy A, Kittel J, Nacca NE, Misra RS, Croft DP, McGraw MD. E-cigarette Exposures, Respiratory Tract Infections, and Impaired Innate Immunity: A Narrative Review. Pediatr Med. 2021;4:1-22.
  22. Muliarta M, Tirtayasa K, Prabawa IPY, Wiryadana KA. Tamarillo Consumption Associated with Increased Acetylcholinesterase Activity and Improved Oxidative Stress Markers in Farmers Exposed to Daily Pesticide-related Activities in Baturiti, Bali, Indonesia. Open Access Macedonian Journal of Medical Sciences. 2020;8(E):244-250.
  23. Higham A, Rattray NJW, Dewhurst JA, Trivedi DK, Fowler SJ, Goodacre R, et al. Electronic Cigarette Exposure Triggers Neutrophil Inflammatory Responses. Respir Res. 2016;17(1):1-10.
  24. Scott A, Lugg ST, Aldridge K, Lewis KE, Bowden A, Mahida RY, et al. Pro-inflammatory Effects of E-Cigarette Vapour Condensate on Human Alveolar Macrophages. Thorax. 2018;73(12):1161–1169.
  25. Reidel B, Radicioni G, Clapp PW, Ford AA, Abdelwahab S, Rebuli ME, et al. E-cigarette Use Causes a Unique Innate Immune Response in The Lung, Involving Increased Neutrophilic Activation and Altered Mucin Secretion. Am J Respir Crit Care Med. 2018;197(4):492–501.
  26. Dewi DNSS, Soedarsono S, Kurniati A, Mertaniasih NM. The specifc DNA region of esxA gene for the target of PCR to determine Mycobacterium tuberculosis accurately. Bali Medical Journal. 2017;6(1):150–155.
  27. Gómez AC, Rodríguez-Fernández P, Villar-Hernández R, Gibert I, Muriel-Moreno B, Lacoma A, et al. E-cigarettes: Effects in Phagocytosis and Cytokines Response Against Mycobacterium Tuberculosis. PLoS One. 2020;15(2):e0228919.
  28. Dwija IBP, Anggraeni M, Ariantari NP. Anti Tuberculosis Activity of Forest Kedondong (Spondias pinnata) Stembark Extract Against Multiple Drug Resistance (MDR) Strain of Mycobacterium Tuberculosis. Bali Medical Journal. 2016;5(1):23–26.
  29. Yana D, Mertaniasih NM, Koendhori EB, Setiawati R. The radiologic findings, positivity rate of culture method examinations, correlation with the type of lower respiratory secretion of adult pulmonary Tuberculosis (TB) patients. Bali Medical Journal. 2023;12(1):1152–1157
  30. Babic M, Schuchardt M, Tölle M, van der Giet M. In Times of Tobacco-free Nicotine Consumption: The Influence of Nicotine on Vascular Calcification. Eur J Clin Invest. 2019;49(4):e13077.
  31. Chaumont M, De Becker B, Zaher W, Culié A, Deprez G, Mélot C, et al. Differential Effects of E-Cigarette on Microvascular Endothelial Function, Arterial Stiffness and Oxidative Stress: A Randomized Crossover Trial. Sci Rep. 2018;8(1):1-12.
  32. Klager S, Vallarino J, MacNaughton P, Christiani DC, Lu Q, Allen JG. Flavoring Chemicals and Aldehydes in E-Cigarette Emissions. Environ Sci Technol. 2017;51(18):10806–10813.
  33. Salamanca JC, Meehan-Atrash J, Vreeke S, Escobedo JO, Peyton DH, Strongin RM. E-Cigarettes Can Emit Formaldehyde at High Levels Under Conditions That Have Been Reported to Be Non-Averse to Users. Sci Rep. 2018;8(1):1-14.
  34. Samburova V, Bhattarai C, Strickland M, Darrow L, Angermann J, Son Y, et al. toxics Aldehydes in Exhaled Breath during E-Cigarette Vaping: Pilot Study Results. 2018;6(3):46.
  35. Haussmann HJ. Use Of Hazard Indices for A Theoretical Evaluation Of Cigarette Smoke Composition. Chem Res Toxicol. 2012;25(4):794–810.
  36. Sleiman M, Logue JM, Montesinos VN, Russell ML, Litter MI, Gundel LA, et al. Emissions from Electronic Cigarettes: Key Parameters Affecting The Release Of Harmful Chemicals. Environ Sci Technol. 2016;50(17):9644–9651.
  37. Carson JL, Zhou L, Brighton L, Mills KH, Zhou H, Jaspers I, et al. Temporal Structure/Function Variation in Cultured Differentiated Human Nasal Epithelium Associated with Acute Single Exposure To Tobacco Smoke Or E-Cigarette Vapor. Inhal Toxicol. 2017;29(3):137.
  38. Ween MP, Whittall JJ, Hamon R, Reynolds PN, Hodge SJ. Phagocytosis and Inflammation: Exploring the Effects of the Components of E‐Cigarette Vapor on Macrophages. Physiol Rep. 2017;5(16):e13370.
  39. Arba IP, Hanriko R, Kurniawaty E. Pengaruh Efek Paparan asap Rokok Elektrik Dibandingkan Paparan Asap Rokok Konvensional Terhadap Gambaran Histopatologi Paru Mencit Jantan (Mus musculus). Jurnal Majority. 2019;8(1):90–4.
  40. Hapsari BAP, Wulaningrum PA, Rimbun R. Association between Smoking Habit and Pulmonary Tuberculosis at Dr. Soetomo General Academic Hospita. Biomolecular and Health Science Journal. 2021;4(2):89.

How to Cite

Krisdanti, I. D. P. A., & Ghosali, A. (2024). Rokok elektrik dan tuberkulosis paru: sebuah tinjauan pustaka. Intisari Sains Medis, 15(1), 201–209. https://doi.org/10.15562/ism.v15i1.1963

HTML
0

Total
0

Share

Search Panel

I Desak Putu Agung Krisdanti
Google Scholar
Pubmed
ISM Journal


Adelia Ghosali
Google Scholar
Pubmed
ISM Journal