Skip to main content Skip to main navigation menu Skip to site footer

Potensi efek Nano-Oleanolic Acid- Lactoferrin (NOAL) dalam menurunkan kadar glukosa darah: : sebuah literatur review

Abstract

Diabetes mellitus (DM) is a major cause of death and disability worldwide where insulin resistance is a fundamental etiological factor of the pathogenesis of Type 2 DM (T2DM). The global prevalence of DM reached 425 million sufferers in 2017 and it is estimated that in 2040 it will reach 615 million people. Efforts to manage diabetes are by controlling blood sugar levels and preventing complications in this disease. Management modalities based on herbal medicine as an alternative have been extensively researched and analyzed. One of them is the use of the Syzygium cumini plant, because it has various bioactive compounds that are antihyperglycemic, anti-diabetic, anti-inflammatory, and antioxidant such as oleanolic acid (OA). The aim of the study was to discuss the potential of Nano-Oleanolic Acid-Lactoferrin (NOAL) in its ability to reduce blood glucose levels in the management of T2DM. The construction mechanism for NOAL using the Nanoparticle Albumin-Bound (NAB) method includes the preparation and construction stages of a combination of OA and lactoferrin (Lf) nanoparticles while the administration mechanism uses the oral route. The mechanism of action of NOAL is through postprandial blood sugar regulation, revitalization and regeneration of pancreatic β cells and increased sensitivity to insulin receptors. OA is known to inhibit PTP1B (Protein Thyrosine Phosphatase 1B) which increases insulin sensitivity through inhibition of PTP1B-mediated negative regulation of bypass insulin signaling. Reasoning creative ideas in this paper, requires an assessment and further research on the potential of NOAL in the management of T2DM.

 

 

Diabetes mellitus (DM) merupakan penyebab utama kematian dan kecacatan di seluruh dunia dimana resistensi insulin merupakan faktor etiologi mendasar dari patogenesis DM Tipe 2 (DMT2). Prevalensi global DM mencapai 425 juta penderita pada tahun 2017 dan diperkirakan pada tahun 2040 mencapai 615 juta orang. Upaya penatalaksanaan DM adalah dengan pengendalian kadar gula darah dan pencegahan komplikasi pada penyakit ini. Modalitas penatalaksanaan berbasis pengobatan herbal sebagai alternatif telah banyak diteliti dan dianalisis. Salah satunya adalah pemanfaatan tumbuhan Syzygium cumini, karena memiliki berbagai senyawa bioaktif yang bersifat antihiperglikemia, antidiabetes, antiinflamasi, dan antioksidan seperti oleanolic acid (OA). Tujuan kajian adalah untuk membahas potensi Nano-Oleanolic Acid- Lactoferrin (NOAL) dalam kemampuannya menurunkan kadar glukosa darah dalam penatalaksanaan DMT2. Mekanisme konstruksi NOAL menggunakan metode Nanoparticle Albumin-Bound (NAB) meliputi tahap preparasi dan konstruksi dari kombinasi OA dan nanopartikel lactoferrin (Lf) sedangkan mekanisme adminitrasinya menggunakan jalur oral. Mekanisme kerja NOAL yakni melalui regulasi gula darah postprandial, revitalisasi dan regenerasi sel β pankreas serta peningkatan sensitivitas reseptor insulin. OA diketahui menghambat PTP1B (Protein Thyrosine Phosphatase 1B) yang meningkatkan sensitivitas insulin melalui penghambatan regulasi negatif termediasi PTP1B dari pintasan persinyalan insulin. Penalaran ide kreatif dalam karya tulis ini, memerlukan suatu pengkajian dan penelitian lebih lanjut mengenai potensi NOAL dalam penatalaksaan DMT2.

References

  1. Goyal R, Jialal I. Diabetes Mellitus Type 2. In: StatPearls. StatPearls Publishing, Treasure Island (FL); 2019.
  2. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018 Feb;14(2):88-98.
  3. Ministry of Health and National Institute of Health Research and Development. Basic Health Research, RISKESDAS, 2018. Jakarta: NIHRD;2018.
  4. Bennett WL, Maruthur NM, Singh S, Segal JB, Wilson LM, Chatterjee R, Marinopoulos SS, Puhan MA, Ranasinghe P, Block L, Nicholson WK. Comparative effectiveness and safety of medications for type 2 diabetes: an update including new drugs and 2-drug combinations. Annals of internal medicine. 2011 May 3;154(9):602-13.
  5. Yanovski SZ, Yanovski JA. Long-term drug treatment for obesity: a systematic and clinical review. Jama. 2014 Jan 1;311(1):74-86.
  6. Chagas VT, França LM, Malik S, de Andrade Paes AM. Syzygium cumini (L.) skeels: a prominent source of bioactive molecules against cardiometabolic diseases. Frontiers in pharmacology. 2015;6.
  7. Castellano JM, Guinda A, Delgado T, Rada M, Cayuela JA. Biochemical basis of the antidiabetic activity of oleanolic acid and related pentacyclic triterpenes. Diabetes. 2013 Jun 1;62(6):1791-9.
  8. Pollier J, Goossens A. Oleanolic acid. Phytochemistry. 2012 May 31;77:10-5.
  9. Zhang ZH, Wang XP, Ayman WY, Munyendo WL, Lv HX, Zhou JP. Studies on lactoferrin nanoparticles of gambogic acid for oral delivery. Drug delivery. 2013 Feb 1;20(2):86-93.
  10. Njølstad PR, Sagen JV, Bjørkhaug L, Odili S, Shehadeh N, Bakry D, Sarici SU, Alpay F, Molnes J, Molven A, Søvik O. Permanent neonatal diabetes caused by glucokinase deficiency. Diabetes. 2003 Nov 1;52(11):2854-60.
  11. Zaccardi F, Webb DR, Yates T, Davies MJ. Pathophysiology of type 1 and type 2 diabetes mellitus: a 90-year perspective. Postgraduate medical journal. 2015 Nov 30:postgradmedj-2015.
  12. Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harbor perspectives in biology. 2014 Jan 1;6(1):a009191.
  13. Prentki M, Nolan CJ. Islet β cell failure in type 2 diabetes. Journal of Clinical Investigation. 2006 Jul 3;116(7):1802.
  14. Muktiningsih SR, Muhammad HS, Harsana IW, Budhi M, Panjaitan P. Review tanaman obat yang digunakan oleh pengobat tradisional di Sumatera Utara, Sumatera Selatan, Bali dan Sulawesi Selatan. Media Penelitian dan Pengembangan Kesehatan. 2001;11(4 Des).
  15. Manaharan T, Palanisamy UD, Ming CH. Tropical plant extracts as potential antihyperglycemic agents. Molecules. 2012 May 18;17(5):5915- 23.
  16. Ayyanar M, Subash-Babu P. Syzygium cumini (L.) Skeels: A review of its phytochemical constituents and traditional uses. Asian Pacific journal of tropical biomedicine. 2012 Mar 1;2(3):240-6.
  17. Ediriweera ER, Ratnasooriya WD. A review on herbs used in treatment of diabetes mellitus by Sri Lankan ayurvedic and traditional physicians. AYU (An international quarterly journal of research in Ayurveda). 2009 Oct 1;30(4):373.
  18. Kumar P, Lakshmi YS, Kondapi AK. Triple drug combination of zidovudine, efavirenz and lamivudine loaded lactoferrin nanoparticles: an effective nano first-line regimen for HIV therapy. Pharmaceutical research. 2017 Feb 1;34(2):257-68.
  19. Qiu WW, Shen Q, Yang F, Wang B, Zou H, Li JY, Li J, Tang J. Synthesis and biological evaluation of heterocyclic ring-substituted maslinic acid derivatives as novel inhibitors of protein tyrosine phosphatase 1B. Bioorganic & medicinal chemistry letters. 2009 Dec 1;19(23):6618-22.
  20. Jiang R, Du X, Lönnerdal B. Comparison of bioactivities of talactoferrin and lactoferrins from human and bovine milk. Journal of pediatric gastroenterology and nutrition. 2014 Nov 1;59(5):642-52.
  21. Xia X, Liu H, Lv H, Zhang J, Zhou J, Zhao Z. Preparation, characterization, and in vitro/vivo studies of oleanolic acid-loaded lactoferrin nanoparticles. Drug design, development and therapy. 2017;11:1417.
  22. Komaki E, Yamaguchi S, Kinoshita M, Kakehi K, Ohta Y, Tsukada Y. Identification of anti-α-amylase components from olive leaf extracts. Food Science and Technology Research. 2003;9(1):35-9.
  23. Ali H, Houghton PJ, Soumyanath A. α-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. Journal of ethnopharmacology. 2006 Oct 11;107(3):449-55.
  24. Whalley NM, Pritchard LE, Smith DM, White A. Processing of proglucagon to GLP-1 in pancreatic α-cells: is this a paracrine mechanism enabling GLP-1 to act on β-cells?. Journal of Endocrinology. 2011 Oct 1;211(1):99-106.
  25. Pols TW, Noriega LG, Nomura M, Auwerx J, Schoonjans K. The bile acid membrane receptor TGR5: a valuable metabolic target. Digestive Diseases. 2011;29(1):37-44.
  26. Duboc H, Taché Y, Hofmann AF. The bile acid TGR5 membrane receptor: from basic research to clinical application. Digestive and Liver Disease. 2014 Apr 30;46(4):302-12.
  27. Sato H, Genet C, Strehle A, Thomas C, Lobstein A, Wagner A, Mioskowski C, Auwerx J, Saladin R. Anti-hyperglycemic activity of a TGR5 agonist isolated from Olea europaea. Biochemical and biophysical research communications. 2007 Nov 3;362(4):793-8.
  28. Bu Y, Shi T, Meng M, Kong G, Tian Y, Chen Q, Yao X, Feng G, Cheng H, Lu Z. A novel screening model for the molecular drug for diabetes and obesity based on tyrosine phosphatase Shp2. Bioorganic & medicinal chemistry letters. 2011 Jan 15;21(2):874-8.
  29. Silva FS, Oliveira PJ, Duarte MF. Oleanolic, Ursolic, and Betulinic Acids as Food Supplements or Pharmaceutical Agents for Type 2 Diabetes: Promise or Illusion?. Journal of agricultural and food chemistry. 2016 Apr 8;64(15):2991-3008.
  30. Wang X, Chen Y, Abdelkader D, Hassan W, Sun H, Liu J. Combination therapy with oleanolic acid and metformin as a synergistic treatment for diabetes. Journal of diabetes research. 2015 Feb 19;2015.
  31. Zhang Z, Jiang M, Xie X, Yang H, Wang X, Xiao L, Wang N. Oleanolic acid ameliorates high glucose-induced endothelial dysfunction via PPARδ activation. Scientific reports. 2017 Jan 9;7:40237.
  32. Qian S, Li H, Chen Y, Zhang W, Yang S, Wu Y. Synthesis and biological evaluation of oleanolic acid derivatives as inhibitors of protein tyrosine phosphatase 1B. Journal of natural products. 2010 Oct 21;73(11):1743-50.
  33. Ramírez-Espinosa JJ, Rios MY, López-Martínez S, López-Vallejo F, Medina-Franco JL, Paoli P, Camici G, Navarrete-Vázquez G, Ortiz- Andrade R, Estrada-Soto S. Antidiabetic activity of some pentacyclic acid triterpenoids, role of PTP–1B: In vitro, in silico, and in vivo approaches. European journal of medicinal chemistry. 2011 Jun 30;46(6):2243-51.
  34. Feng J, Zhang P, Chen X, He G. PI3K and ERK/Nrf2 pathways are involved in oleanolic acid‐induced heme oxygenase‐1 expression in rat vascular smooth muscle cells. Journal of cellular biochemistry. 2011 Jun 1;112(6):1524-31.
  35. Sangeetha KN, Sujatha S, Muthusamy VS, Anand S, Nithya N, Velmurugan D, Balakrishnan A, Lakshmi BS. 3β-taraxerol of Mangifera indica, a PI3K dependent dual activator of glucose transport and glycogen synthesis in 3T3-L1 adipocytes. Biochimica et Biophysica Acta (BBA)- General Subjects. 2010 Mar 31;1800(3):359-66.
  36. de Melo CL, Queiroz MG, Fonseca SG, Bizerra AM, Lemos TL, Melo TS, et al.. Oleanolic acid, a natural triterpenoid improves blood glucose tolerance in normal mice and ameliorates visceral obesity in mice fed a high-fat diet. Chemico-biological interactions. 2010 Apr 15;185(1):59-65.
  37. Satyarsa AB. Potential effects of alkaloid vindolicine substances in tapak dara leafs (Catharanthus roseus (L.) G. Don) in reducing blood glucose levels. Journal of Medicine and Health. 2019;2(4).
  38. Veronica E, Suyantari SA, Swari WD, Purwaningrum NM, Sudarsa PS. Effectiveness of Antibacterial Extract of Kenop (Gomphrena Globosa) Flower Extract Against Growth of Propionibacterium Acnes Bacteria. Indonesian Journal for Health Sciences. 2020;4(2):115-20.
  39. Pratama GM, Hartawan IG, Indriani IG, Yusrika MU, Suryantari SA, Sudarsa PS. Potency of Spirulina platensis extract as sunscreen on Ultraviolet B exposure. Journal of Medicine and Health. 2020;2(6).
  40. Mukundwa A, Mukaratirwa S, Masola B. Effects of oleanolic acid on the insulin signaling pathway in skeletal muscle of streptozotocin‐induced diabetic male Sprague‐Dawley rats. Journal of diabetes. 2016 Jan 1;8(1):98-108.

How to Cite

Yuwana, K. T., Aryadi, I. P. H., & Pramartha, I. N. T. . (2023). Potensi efek Nano-Oleanolic Acid- Lactoferrin (NOAL) dalam menurunkan kadar glukosa darah: : sebuah literatur review. Intisari Sains Medis, 14(2), 818–824. https://doi.org/10.15562/ism.v14i2.1722

HTML
0

Total
0

Share

Search Panel

Kadek Tresna Yuwana
Google Scholar
Pubmed
ISM Journal


I Putu Hendri Aryadi
Google Scholar
Pubmed
ISM Journal


I Nyoman Tri Pramartha
Google Scholar
Pubmed
ISM Journal