Skip to main content Skip to main navigation menu Skip to site footer

Karakteristik computer vision syndrome pada siswa SMA dengan internet gaming disorder

Abstract

Background: The rapid development of technology accompanied by a shift in sports interest towards eSports or online games in adolescents causes them to spend longer in front of the screen. Poor application of ergofthalmology can trigger Computer Vision Syndrome (CVS), while bad gaming habits can cause Internet Gaming Disorder (IGD).

Purpose: The purpose of this study is to know the characteristics of CVS with IGD in high school students.

Method: A descriptive study using a cross-sectional method with total sampling. Samples were taken from one of the high schools in Tabanan Regency. There were 362 samples that met the inclusion criteria. CVS diagnosis based on the CVS-Q questionnaire and the IGD with the IGDS-9-SF questionnaire in Indonesian. The features are based on gender, screentime and daily leisure time routine.

Results: The mean age of the respondents was 16.64 years ± 0.692. The overall CVS prevalence was 59.9% (n=217). The distribution of CVS symptoms included itchy eyes (53.3%; n=193), headaches (50.5%; n=183) and the sensation of burning and watery eyes (50.3%; n=182). The prevalence of ED was 0.8% (n=3); CVS without IGD 59.4% (n=215); while CVS with IGD was 0.6% (n=2). There are characteristics in screentime of more than 4 hours and daily routine of watching dramas/movies, while differences are found based on gender. Based on gender, CVS without IGD was more common in women (37.6%;n=136), while CVS accompanied by IGD had the same prevalence in both men and women of 0.3% (n=1)

Conclusion: There are similarities between CVS without IGD and CVS accompanied by IGD based on screen time and daily routines. Different characteristics found by sex.

 

Latar Belakang: Perkembangan teknologi yang semakin pesat diiringi pergeseran minat olahraga menuju eSports atau game online pada remaja menyebabkan mereka lebih lama melakukan aktivitas di depan layar. Penerapan ergoftalmologi yang buruk dapat memicu Computer Vision Syndrome (CVS), sedangkan kebiasaan bermain game yang buruk dapat menimbulkan Internet Gaming Disorder (IGD). Penelitian ini bertujuan untuk mengetahui karakteristik CVS pada siswa SMA dengan IGD

Metode: Studi deskriptif menggunakan metode potong lintang dengan total sampling. Sampel yang diambil dari salah satu SMA di Kabupaten Tabanan. Terdapat 362 sampel yang memenuhi kriteria inklusi. Diagnosis CVS berdasarkan kuisioner CVS-Q serta IGD dengan kuesioner IGDS-9-SF dalam bahasa Indonesia. Karakteristik dibandingkan berdasarkan jenis kelamin, screentime dan rutinitas harian saat senggang.

Hasil: Rerata usia responden 16,64 tahun ±0,692. Prevalensi CVS secara keseluruhan 59.9% (n=217). Distribusi gejala CVS diantaranya mata gatal (53,3%; n=193), sakit kepala (50,5%; n=183) dan sensasi mata perih serta berair (50,3%; n=182). Prevalensi IGD sebesar 0,8% (n=3); CVS tanpa disertai IGD 59,4% (n=215); sedangkan CVS disertai IGD 0,6% (n=2). Terdapat kesamaan karakteristik pada screentime lebih dari 4 jam dan rutinitas harian menonton drama/film, sedangkan perbedaan ditemukan berdasarkan jenis kelamin. Berdasarkan jenis kelamin,  CVS tanpa disertai IGD lebih banyak terjadi pada perempuan (37,6%;n=136), sedangkan CVS disertai IGD memiliki prevalensi yang sama baik pada laki-laki dan perempuan sebesar 0,3% (n=1)

Kesimpulan: Karakteristik antara CVS tanpa disertai IGD dengan CVS disertai IGD terdapat kesamaan berdasarkan screentime dan rutinitas harian. Perbedaan karakteristik ditemukan berdasarkan jenis kelamin.

References

  1. Pluss MA, Bennett KJM, Novak AR, Panchuk D, Coutts AJ, Fransen J. Esports: The chess of the 21st century. Front Psychol. 2019;10(JAN).
  2. Difrancisco-Donoghue J, Balentine J, Schmidt G, Zwibel H. Managing the health of the eSport athlete: An integrated health management model. BMJ Open Sport Exerc Med. 2019;5(1).
  3. AOA. Computer vision syndrome [Internet]. 2021 [cited 2021 Nov 28]. Available from: https://www.aoa.org/healthy-eyes/eye-and-vision-conditions/computer-vision-syndrome?sso=y
  4. Paschke K, Austermann MI, Thomasius R. Assessing ICD-11 gaming disorder in adolescent gamers: Development and validation of the gaming disorder scale for adolescents (GADIS-A). J Clin Med. 2020 Apr 1;9(4).
  5. Ranasinghe P, Wathurapatha WS, Perera YS, Lamabadusuriya DA, Kulatunga S, Jayawardana N, et al. Computer vision syndrome among computer office workers in a developing country: An evaluation of prevalence and risk factors. BMC Res Notes. 2016;9(1):1–9.
  6. Abuallut I, Ajeebi RE, Bahari AY, Abudeyah MA, Alyamani AA, Zurayyir AJ, et al. Prevalence of Computer Vision Syndrome among School-Age Children during the COVID-19 Pandemic, Saudi Arabia: A Cross-Sectional Survey. Children. 2022 Nov 9;9(11):1718.
  7. Vikanaswari GI, Handayani AT. The screening of computer vision syndrome in medical students of Udayana University. DiscoverSys | Bali Journal of Ophthalmology [Internet]. 2018 [cited 2021 Dec 29];2(2):28–34. Available from: http://balijournalophth.org
  8. Lema AK, Anbesu EW. Computer vision syndrome and its determinants: A systematic review and meta-analysis. SAGE Open Med [Internet]. 2022 [cited 2023 Jan 30];10:20503121221142400. Available from: /pmc/articles/PMC9743027/
  9. Nuryasin MF. Prevalensi Computer Vision Syndrome Pada Siswa SMA Islam Al-Azhar 3 Pusat Jakarta Selama Masa Pandemi Covid-19 dan Faktor-Faktor Penyebabnya [Internet]. 2022 [cited 2023 Jan 28]. Available from: https://repository.uinjkt.ac.id/dspace/bitstream/123456789/64338/1/11181330000078_Muhammad%20Farras%20Nuryasin%20-%20Muhammad%20Farras%20Nuryasin.pdf
  10. López-de-León EO, Morales-González Á, Domínguez-Pacheco FA, Cruz-Orea A, Hernández-Aguilar C. Ergophthalmology around COVID-19. Científica. 2021 Jul 1;25(2):1–12.
  11. Wang L, Wei X, Deng Y. Computer Vision Syndrome During SARS-CoV-2 Outbreak in University Students: A Comparison Between Online Courses and Classroom Lectures. Front Public Health [Internet]. 2021 Jul 8 [cited 2022 Aug 28];9:696036. Available from: /pmc/articles/PMC8296301/
  12. Gilbert N. Number of Gamers Worldwide 2021/2022: Demographics, Statistics, and Predictions [Internet]. Finances Online. 2021 [cited 2022 Jan 9]. Available from: https://financesonline.com/number-of-gamers-worldwide/
  13. Agbonlahor O. Prevalence and knowledge of Computer Vision Syndrome (CVS) among the Working Class Adults in F.C.T. Nigeria. Journal of the Nigerian Optometric Association [Internet]. 2019 [cited 2023 Jan 28];21(1):49–60. Available from: https://www.ajol.info/index.php/jnoa/article/view/189347/178582
  14. Sánchez-Brau M, Domenech-Amigot B, Brocal-Fernández F, Quesada-Rico JA, Seguí-Crespo M. Prevalence of Computer Vision Syndrome and Its Relationship with Ergonomic and Individual Factors in Presbyopic VDT Workers Using Progressive Addition Lenses. Int J Environ Res Public Health [Internet]. 2020 Feb 5 [cited 2023 Feb 1];17(3). Available from: /pmc/articles/PMC7038098/
  15. Auffret, Gomart G, Bourcier T, Gaucher D, Speeg-Schatz C, Sauer A. Perturbations oculaires secondaires à l’utilisation de supports numériques. Symptômes, prévalence, physiopathologie et prise en charge. J Fr Ophtalmol. 2021 Dec 1;44(10):1605–10.
  16. Dumadi D, Maharani M, Kesoema TA, Prihatningtias R. Difference of Schirmer Test Results Before and After Using Smartphones with Various Screen Brightness Levels. Diponegoro International Medical Journal [Internet]. 2021 May 10 [cited 2021 Oct 15];2(2):1–5. Available from: https://ejournal2.undip.ac.id/index.php/dimj/article/view/9763
  17. Arshad S, Faisal Qureshi M, Ali M, Piryani K, Shafqat K, Mateen M, et al. Computer vision syndrome: prevalence and predictors among students. Annals of Psychophysiology. 2019 Oct 12;06(01):15–22.
  18. Yuliastini NPS, Juliari IGAM, Susila NKN, Triningrat AAMP, Manuaba IBP. Karakteristik dan hubungan nilai tear break up time dengan umur dan jenis kelamin pelayanan kesehatan desa Tianyar maret 2015. Medicina (B Aires). 2019 May 24;50(2).
  19. Stevens MWR, Dorstyn D, Delfabbro PH, King DL. Global prevalence of gaming disorder: A systematic review and meta-analysis. Aust N Z J Psychiatry [Internet]. 2021 Jun 1 [cited 2023 Jan 29];55(6):553–68. Available from: https://pubmed.ncbi.nlm.nih.gov/33028074/
  20. Pawłowska B, Potembska E, Szymańska J. Demographic and family-related predictors of online gaming addiction in adolescents. Polish Journal of Public Health. 2018 Jan 1;128(1):9–13.
  21. Shi J, Boak A, Mann R, Turner NE. Adolescent Problem Video Gaming in Urban and Non-urban Regions. Int J Ment Health Addict. 2019 Aug 15;17(4):817–27.
  22. Dzulfaroh AN, Pratiwi IE. Daerah dengan Pengguna Internet Tertinggi di Indonesia [Internet]. Kompas. 2022 [cited 2023 Feb 6]. Available from: https://www.kompas.com/tren/read/2022/10/23/210500765/daerah-dengan-pengguna-internet-tertinggi-di-indonesia?page=all
  23. Peeters M, Koning I, Lemmens J, van Den Eijnden R. Normative, passionate, or problematic? Identification of adolescent gamer subtypes over time. J Behav Addict [Internet]. 2019 [cited 2023 Feb 1];8(3):574. Available from: /pmc/articles/PMC7044612/

How to Cite

Kartika, P. A. A., Juliari, I. G. A. M., Suryaningrum, I. G. A. R., & Sutyawan, I. W. E. (2023). Karakteristik computer vision syndrome pada siswa SMA dengan internet gaming disorder. Intisari Sains Medis, 14(1), 350–357. https://doi.org/10.15562/ism.v14i1.1675

HTML
0

Total
0

Share

Search Panel

Putu Anggara Ahara Kartika
Google Scholar
Pubmed
ISM Journal


I Gusti Ayu Made Juliari
Google Scholar
Pubmed
ISM Journal


I Gusti Ayu Ratna Suryaningrum
Google Scholar
Pubmed
ISM Journal


I Wayan Eka Sutyawan
Google Scholar
Pubmed
ISM Journal