Skip to main content Skip to main navigation menu Skip to site footer

Pengaruh Asupan Air pada Diabetes Melitus Tipe 2: Tinjauan Pustaka

  • Handayani Eka Puspita Sari ,
  • Diana Sunardi ,
  • Krisadelfa Sutanto ,

Abstract

Introduction: Diabetes mellitus (DM) is a health problem that is increasing globally. In 2021, about 19,4 million people in Indonesia were living with DM. This number is predicted to rise to 28.5 million by 2045. The main modifiable risk factors for DM are diet and physical activity. One dietary factor that has not been comprehensively studied is water intake.

Objective: This review aims to demonstrate the effect of water intake to type 2 DM.

Methods: The design used in this study is a literature review. The literature review was done using the PubMed Central® search engine.

Results: Hormone arginine vasopressin (AVP) only known as hormone which play a role in maintaining fluid balance and not linked in glucose metabolism, previously. Through copeptin as a surrogate marker, AVP levels in plasma can be known. When water intake is insufficient to maintain plasma osmolality, AVP will be released. Several researches show unusual role of AVP in glucose metabolism. Increased AVP will stimulate AVP receptors, thereby increasing glycogenolysis and gluconeogenesis and decreasing insulin sensitivity. Increased copeptin is linked to an increased risk of insulin resistance, DM, and metabolic syndrome. By giving more water to individuals with low water drinking habits, as seen from high plasma copeptin values, has proven effective in reducing copeptin and plasma glucose.

Conclusion: Low water intake may increase risk factor for the development of type 2 DM. Individual needs to comply water intake recommendation to reduce the risk of type 2 DM. 

 

Pendahuluan: Diabetes melitus (DM) merupakan permasalahan kesehatan yang semakin meningkat di dunia. Penderita DM di Indonesia pada tahun 2021 mencapai 19,4 juta jiwa dan diperkirakan akan terus meningkat mencapai 28,5 juta jiwa pada tahun 2045. Faktor risiko utama yang dapat dimodifikasi pada penyakit DM adalah diet dan aktivitas fisik. Satu faktor diet yang belum dipelajari secara komprehensif adalah asupan air putih.

Tujuan: Tinjauan ini bertujuan untuk memberikan ulasan pengaruh asupan air putih terhadap DM tipe 2.

Metode: Metode penelitian yang digunakan adalah tinjauan pustaka. Tinjauan literatur dilakukan dengan menggunakan mesin pencari PubMed Central®.

Hasil: Sebelumnya, hormon arginin vasopresin (AVP) diketahui hanya berperan dalam menjaga keseimbangan cairan dalam tubuh dan tidak terkait dengan metabolisme glukosa. Kadar AVP dapat diketahui melalui kopeptin dalam plasma sebagai penanda pengganti AVP. Ketika asupan air putih tidak cukup untuk mempertahankan osmolalitas plasma, AVP akan dilepaskan. Beberapa penelitian menunjukkan ternyata terdapat peran yang tidak biasa dari AVP dalam metabolisme glukosa. Peningkatan AVP akan menstimulasi reseptor-reseptor AVP sehingga meningkatkan glikogenolisis dan glukoneogenesis serta penurunan sensitivitas insulin. Peningkatan kopeptin berkaitan dengan peningkatan risiko resistensi insulin, diabetes, dan sindrom metabolik. Dengan intervensi pemberian air putih pada individu yang memiliki kebiasaan minum air putih rendah, yang terlihat dari kopeptin plasma yang tinggi, terbukti efektif dalam menurunkan kopeptin dan glukosa plasma.

Kesimpulan: Asupan air yang rendah dapat meningkatkan risiko terjadinya DM tipe 2. Individu perlu mematuhi rekomendasi asupan air putih agar mengurangi risiko DM tipe 2.

References

  1. World Health Organisation. Diabetes [Internet]. 2022 [cited 2023 Mar 9]. Available from: https://www.who.int/news-room/fact-sheets/detail/diabetes
  2. Federation ID. IDF Diabetes Atlas Tenth edition 2021. International Diabetes Federation. 2021.
  3. Toumillehto J, Lindström J, Eriksson JG, Valle TT, Uusitupa M. Prevention of type 2 Diabetes Mellitus by Changes in Lifestyle Among Subjects with Impaired Glucose Tolerance. N Engl J Med. 2013;344(18):1343–50.
  4. Hostalek U, Campbell I. Metformin for diabetes prevention: update of the evidence base. Vol. 37, Current Medical Research and Opinion. 2021.
  5. Malik VS, Popkin BM, Bray GA, Després JP, Hu FB. Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Vol. 121, Circulation. 2010. p. 1356–64.
  6. Malik VS, Pan A, Willett WC, Hu FB. Sugar-sweetened beverages and weight gain in children and adults: A systematic review and meta-analysis. American Journal of Clinical Nutrition. 2013;98(4).
  7. Neuenschwander M, Ballon A, Weber KS, Norat T, Aune D, Schwingshackl L, et al. Role of diet in type 2 diabetes incidence: Umbrella review of meta-analyses of prospective observational studies. Vol. 366, The BMJ. 2019.
  8. Carroll HA, Davis MG, Papadaki A. Higher plain water intake is associated with lower type 2 diabetes risk: A cross-sectional study in humans. Nutrition Research. 2015 Oct 1;35(10):865–72.
  9. García AIL, Moráis-Moreno C, Samaniego-Vaesken M de L, Puga AM, Partearroyo T, Varela-Moreiras G. Influence of water intake and balance on body composition in healthy young adults from Spain. Nutrients. 2019 Aug 1;11(8).
  10. Jéquier E, Constant F. Water as an essential nutrient: The physiological basis of hydration. Vol. 64, European Journal of Clinical Nutrition. Nature Publishing Group; 2010. p. 115–23.
  11. Perrier ET. Hydration for Health: So What? Ten Advances in Recent Hydration History. In: Annals of Nutrition and Metabolism. S. Karger AG; 2019. p. 4–10.
  12. Zerbe RL, Vinicor F, Robertson GL. Plasma vasopressin in uncontrolled diabetes mellitus. Diabetes. 1979;28(5).
  13. Enhörning S, Wang TJ, Nilsson PM, Almgren P, Hedblad B, Berglund G, et al. Plasma copeptin and the risk of diabetes mellitus. Circulation. 2010;121(19).
  14. Roussel R, Fezeu L, Bouby N, Balkau B, Lantieri O, Alhenc-Gelas F, et al. Low water intake and risk for new-onset hyperglycemia. Diabetes Care. 2011;34(12).
  15. Lemetais G, Melander O, Vecchio M, Bottin JH, Enhörning S, Perrier ET. Effect of increased water intake on plasma copeptin in healthy adults. Eur J Nutr. 2018 Aug 1;57(5):1883–90.
  16. Verbalis JG. Disorders of body water homeostasis. Best Pract Res Clin Endocrinol Metab. 2003;17(4).
  17. Enhörning S, Melander O. The vasopressin system in the risk of diabetes and cardiorenal disease, and hydration as a potential lifestyle intervention. Ann Nutr Metab. 2018 Jun 1;72:21–7.
  18. Di Iorgi N, Napoli F, Allegri AEM, Olivieri I, Bertelli E, Gallizia A, et al. Diabetes insipidus - Diagnosis and management. Vol. 77, Hormone Research in Paediatrics. 2012.
  19. Barat C, Simpson LR, Breslow E. Properties of human vasopressin precursor constructs: Inefficient monomer folding in the absence of copeptin as a potential contributor to diabetes insipidus. Biochemistry. 2004;43(25).
  20. Seal A. The Acute Effect of Water Intake on Glucose Regulation in Low Drinkers [Dissertation]. [Arkansas]: University of Arkansas; 2019.
  21. Valtin H. “Drink at least eight glasses of water a day.” Really? Is there scientific evidence for “8 × 8”? Vol. 283, American Journal of Physiology - Regulatory Integrative and Comparative Physiology. 2002.
  22. Bankir L, Bichet DG, Morgenthaler NG. Vasopressin: physiology, assessment and osmosensation. In: Journal of Internal Medicine. 2017.
  23. Nakamura K, Velho G, Bouby N. Vasopressin and metabolic disorders: translation from experimental models to clinical use. In: Journal of Internal Medicine. 2017.
  24. Kuo T, McQueen A, Chen TC, Wang JC. Regulation of glucose homeostasis by glucocorticoids. Adv Exp Med Biol. 2015;872.
  25. Perraudin V, Delarue C, Lefebvre H, Contesse V, Kuhn JM, Vaudry H. Vasopressin stimulates cortisol secretion from human adrenocortical tissue through activation of V1 receptors. Journal of Clinical Endocrinology and Metabolism. 1993;76(6).
  26. Perrier E, Vergne S, Klein A, Poupin M, Rondeau P, Le Bellego L, et al. Hydration biomarkers in free-living adults with different levels of habitual fluid consumption. Br J Nutr. 2013;109(9).
  27. Abu-Basha EA, Yibchok-Anun S, Hsu WH. Glucose dependency of arginine vasopressin-induced insulin and glucagon release from the perfused rat pancreas. Metabolism. 2002;51(9).
  28. Min HK, Ko HY, Kim JT, Bankir L, Lee SW. Low hydration status may be associated with insulin resistance and fat distribution: Analysis of the Korea National Health and Nutrition Examination Survey (KNHANES) 2008-2010. British Journal of Nutrition. 2020;124(2):199–208.
  29. Morgenthaler NG, Struck J, Jochberger S, Dünser MW. Copeptin: clinical use of a new biomarker. Trends in Endocrinology and Metabolism. 2008;19(2).
  30. Guelinckx I, Vecchio M, Perrier ET, Lemetais G. Fluid Intake and vasopressin: Connecting the dots. In: Annals of Nutrition and Metabolism. S. Karger AG; 2016. p. 6–11.
  31. Sontrop JM, Huang SH, Garg AX, Moist L, House AA, Gallo K, et al. Effect of increased water intake on plasma copeptin in patients with chronic kidney disease: results from a pilot randomised controlled trial. BMJ Open. 2015;5(11).
  32. Enhörning S, Bankir L, Bouby N, Struck J, Hedblad B, Persson M, et al. Copeptin, a marker of vasopressin, in abdominal obesity, diabetes and microalbuminuria: The prospective Malmö Diet and Cancer Study cardiovascular cohort. Int J Obes. 2013;37(4).
  33. Saleem U, Khaleghi M, Morgenthaler NG, Bergmann A, Struck J, Mosley TH, et al. Plasma carboxy-terminal provasopressin (copeptin): A novel marker of insulin resistance and metabolic syndrome. Journal of Clinical Endocrinology and Metabolism. 2009;94(7).
  34. Roussel R, Boustany R El, Bouby N, Potier L, Fumeron F, Mohammedi K, et al. Plasma copeptin, AVP gene variants, and incidence of type 2 diabetes in a cohort from the community. Journal of Clinical Endocrinology and Metabolism. 2016;101(6).
  35. Roussel R, Fezeu L, Marre M, Velho G, Fumeron F, Jungers P, et al. Comparison between copeptin and vasopressin in a population from the community and in people with chronic kidney disease. Journal of Clinical Endocrinology and Metabolism. 2014;99(12).
  36. Enhörning S, Tasevska I, Roussel R, Bouby N, Persson M, Burri P, et al. Effects of hydration on plasma copeptin, glycemia and gluco-regulatory hormones: a water intervention in humans. Eur J Nutr. 2019 Feb 1;58(1):315–24.
  37. Cryer PE. Minireview: Glucagon in the pathogenesis of hypoglycemia and hyperglycemia in diabetes. Vol. 153, Endocrinology. 2012.
  38. Enhorning S, Brunkwall L, Tasevska I, Ericson U, Tholin JP, Persson M, et al. Water supplementation reduces copeptin and plasma glucose in adults with high copeptin: The H2O metabolism pilot study. Journal of Clinical Endocrinology and Metabolism. 2019 Jun 1;104(6):1917–25.
  39. Armstrong LE, Barquera S, Duhamel J ‐F., Hardinsyah R, Haslam D, Lafontan M. Recommendations for healthier hydration: addressing the public health issues of obesity and type 2 diabetes. Clin Obes. 2012 Oct;2(5–6):115–24.
  40. Peraturan Menteri Kesehatan Republik Indonesia. Angka Kecukupan Gizi yang Dianjurkan untuk Masyarakat Indonesia. Indonesia; 2019.
  41. Kementerian Kesehatan. Isi Piringku: Pedoman Makan Kekinian Orang Indonesia [Internet]. Kementerian Kesehatan. 2022 [cited 2023 Mar 14]. Available from: https://promkes.kemkes.go.id/isi-piringku-pedoman-makan-kekinian-orang-indonesia

How to Cite

Sari, H. E. P., Sunardi, D., & Sutanto, K. (2023). Pengaruh Asupan Air pada Diabetes Melitus Tipe 2: Tinjauan Pustaka. Intisari Sains Medis, 14(1), 533–537. https://doi.org/10.15562/ism.v14i1.1671

HTML
0

Total
0

Share

Search Panel

Handayani Eka Puspita Sari
Google Scholar
Pubmed
ISM Journal


Diana Sunardi
Google Scholar
Pubmed
ISM Journal


Krisadelfa Sutanto
Google Scholar
Pubmed
ISM Journal