Skip to main content Skip to main navigation menu Skip to site footer

Sintesa nanopartikel senyawa bioaktif ekstrak etanol kulit kayu manis dengan teknik emulsi spontan di dalam ruang tabung gelas berdiameter 500 μm

Abstract

Background: The bioactive compounds material sourced from cinnamon has many benefits, especially as a medicinal ingredient. Therefore, this material has enormous potential to be developed in the future as a raw material for medicine. However, due to its hydrophobic nature, low chemical stability, easily degraded, and has relatively large particle size, its use is constrained. To overcome these problems, emulsifying of these bioactive compounds with a surfactant and making it nanometer in size, has been carried out.

Method: The cinnamon bark bioactive compounds nanoparticles were synthesized by spontaneous emulsion technique using tween 80 surfactant in a cylindrical chamber with a diameter of 500 μm and a length of 50 cm.

Results: The bioactive compounds contained in cinnamon bark are: (1) cinnamaldehyde (68%), (2) bornylester of acrylic acid (10,31%), (3) alpha-copaene (3,32%), (4) cumarine (12,30%), and (5) methyl isoheptadecanoate (5.25%). Synthesized using four different concentrate masses of these compounds, namely: 4 mg, 6 mg, 8 mg and 10 mg dissolved in 100 ml of ethanol, resulting in an average nanoparticle diameter of: 11.0 nm; 12.1nm; 12.5nm; and 13.9 nm. The polydispersity indices of the synthesized nanoparticles in each synthesis process are 0,292; 0,300; 0,215; dan 0,313.

Conclusion:  From the data obtained, it shows that the greater the mass of the concentrate used, the greater the average diameter of the resulting nanoparticles. The relationship is linear. The same thing happened to the polydispersity index. The value of the polydispersity index increases when the concentrate mass used increases.

 

Latar Belakang: Material senyawa bioaktif yang bersumber dari kulit kayu manis (cinnamon) memiliki banyak manfaat terutama sebagai bahan obat-obatan. Oleh karena itu material senyawa bioaktif ini memiliki potensi yang sangat besar untuk dikembangkan ke depan sebagai bahan baku obat. Namun, karena sifatnya yang hidrofobik, stabilitas kimianya yang rendah, mudah terdegradasi, dan ukuran partikelnya yang relatif besar, penggunaannya mengalami kendala. Untuk mengatasi masalah ini suatu pendekatan mengemulsi senyawa bioaktif tersebut dengan suatu surfaktan dan membuat ukurannya berorde nanometer, telah dilakukan.

Metode: Untuk menghasilkan partikel senyawa bioaktif kulit kayu manis berukuran nanometer, sintesa dengan teknik emulsi spontan dengan menggunakan surfaktan tween 80, telah dilakukan di dalam suatu ruang berbentuk tabung berdiameter 500 μm dan panjang 50 cm.

Hasil: Dari hasil identifikasi, senyawa bioaktif yang terkandung di dalam kulit kayu manis adalah: (1) cinnamaldehyde (68%), (2) bornylester of acrylic acid (10,31%), (3) alpha-copaene (3,32%), (4) cumarine (12,30%), dan (5) methyl isoheptadecanoate (5,25%). Sintesa dengan menggunakan empat ragam massa konsentrat dari senyawa-senyawa tersebut, yaitu: 4 mg, 6 mg, 8 mg dan 10 mg yang dilarutkan ke dalam 100 ml etanol, menghasilkan diameter rata-rata nanopartikel masing-masing sebesar 11,0 nm; 12,1 nm; 12,5 nm; dan 13,9 nm. Indeks polidispersitasnya masing-masing sebesar 0,292; 0,300; 0,215; dan 0,313.

Simpulan: Dari data yang diperoleh menunjukkan bahwa semakin besar massa konsentrat yang digunakan, semakin besar pula diameter rata-rata nanopartikel yang dihasilkan. Hubungannya bersifat linier. Hal yang sama terjadi pada indeks polidispersitasnya. Nilai indeks polidispersitas semakin besar ketika massa konsentrat yang digunakan semakin besar.

References

  1. Lee WY, Lee CY, Kim YS, Kim CE. The Methodological Trends of Traditional Herbal Medicine Employing Network Pharmacology. Biomolecules. 2019;9(8):362.
  2. Lenssen KGM, Bast A, de Boer A. International Perspectives on Substantiating the Efficacy of Herbal Dietary Supplements and Herbal Medicines Through Evidence on Traditional Use. Comprehensive Reviews in Food Science and Food Safety. 2019; 18(4):910-922.
  3. Sadeghi S, Davoodvandi A, Pourhanifeh MH, Sharifi N, Nezhad RA, Sahebnasagh R, et al. Anti-cancer effects of cinnamon: Insights into its apoptosis effects. European Journal of Medicinal Chemistry. 2019;178(1):131-140.
  4. Zare R, Najarzadeh A, Zarshenas MM, Shams M, Heydari M. Efficacy of Cinnamon in Patients with Type II Diabetes Mellitus: A Randomized Controlled Clinical Trial. Clinical Nutrition. 2019;38(2):549-556.
  5. Schink A, Naumoska K, Kitanovski Z, Kampf CJ, Nowoisky JF, Thines E, et al. Anti-inflammatory effects of cinnamon extract and identification of active compounds influencing the TLR2 and TLR4 signaling pathways. Food & Function. 2018;9(11):5950-5964.
  6. Siew ZZ, Chan EWC, Wong CW. Hydrophobic bioactive constituents of cinnamon bark as inhibitor of polyphenol oxidase from Musa acuminata ‘Mas’ peel. Biocatalysis and Agricultural Biotechnology. 2022;45(1):102504.
  7. Parvez S, Wani IA, Masoodi FA. Nanoencapsulation of green tea extract using maltodextrin and its characterisation. Food Chemistry. 2022;384(1):132579.
  8. Cheng M, Zenga G, Huang D, Yang C, Lai C, Zhang C, et al. Tween 80 surfactant-enhanced bioremediation: toward a solution to the soil contamination by hydrophobic organic compounds. Critical Revies in Biotechnology. 2018;38(1):17-30.
  9. Zhu Z, Wen Y, Yi J, Cao Y, Liu F, McClements DJ. Comparison of natural and synthetic surfactants at forming and stabilizing nanoemulsions: Tea saponin, Quillaja saponin, and Tween 80. Journal of Colloid and Interface Science. 2019;536(1):80-87.
  10. Kitson GK, Larsen BS, McEwen CN. Gas chromatography and mass spectrometry: a practical guide. United Kingdom Edition: Academic Press Limited. 1996:24-28
  11. Hajinejad M, Ghaddaripouri M, Dabzadeh M, Forouzanfar F, Sahab-Negah S. Natural Cinnamaldehyde and Its Derivatives Ameliorate Neuroinflammatory Pathways in Neurodegenerative Diseases. BioMed Research International. 2020;2020:1034325.
  12. Cox HJ, Li J, Saini P, Paterson JR, Sharples GJ, Badyal JPS. Bioinspired and eco-friendly high efficacy cinnamaldehyde antibacterial surfaces. Journal of Materials Chemistry B. 2021;9(12):2918–2930.
  13. El-Bassossy HM, Fahmy A, Badawy D. Cinnamaldehyde protects from the hypertension associated with diabetes. Food and Chemical Toxicology. 2011;49(1): 3007-3012.
  14. Cheng M, Zeng G, Huang D, Yang C, Lai C, Zhang C, et al. Advantages and challenges of Tween 80 surfactant-enhanced technologies for the remediation of soils contaminated with hydrophobic organic compounds. Chemical Engineering Journal. 2017;314(1):98-113.
  15. Suryawati N, Jawi IM. Potential development of turmeric extract nanoparticles as a topical anti-inflammatory agent. Bali Medical Journal. 2020;9(3):680–685.
  16. Hartaningsih NMD, Prabawa IPY, Putu BBAG, Sindhughosa DA, Manuaba IBAP, Pramesemara IGN. Potensi terapi kombinasi Liver Growth Factor (LGF) dan Adrenomedullin (ADM) sebagai harapan baru penatalaksanaan Azoospermia Non-Obstruktif (ANO): tinjauan pustaka. Intisari Sains Medis. 2022;13(1):202-209.
  17. Danaei M, Dehghankhold M, Ataei S, Davarani FH, Javanmard R, Dokhani A, et al. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics. 2018;10(2):57.
  18. Wahjuni S, Astitiasih IAR, Puspawati NM, Lahaya M, Putra AAB, Manuaba IBP, et al. Nano extract of Coriandrum sativum l (ketumbar seed) decrease malondialdehyde (MDA) and blood glucose, and increase superoxide dismutase (SOD) in hyperglycaemic wistar rats. Indonesia Journal of Biomedical Science. 2022;16(2):140–147.

How to Cite

Manullang, M. V., & Saragih, H. (2023). Sintesa nanopartikel senyawa bioaktif ekstrak etanol kulit kayu manis dengan teknik emulsi spontan di dalam ruang tabung gelas berdiameter 500 μm. Intisari Sains Medis, 14(1), 329–338. https://doi.org/10.15562/ism.v14i1.1639

HTML
0

Total
0

Share

Search Panel

Maria Vani Manullang
Google Scholar
Pubmed
ISM Journal


Horasdia Saragih
Google Scholar
Pubmed
ISM Journal