Skip to main content Skip to main navigation menu Skip to site footer

Pengaruh ekstrak etanol umbi ubi jalar ungu terhadap kadar dopamin striatum dan perilaku stereotipi pada tikus wistar yang diinduksi methylphenidate

Abstract

Background: Anthocyanins are flavonoids that have various potentials such as antioxidant, anti-inflammatory and antiapoptotic. One source of anthocyanins which is common among the Indonesian are purple sweet potato (Ipomoea batatas L.). Its potential can be used to prevent and treat the effects of substances including psychostimulants. Methylphenidate (MPH) is one of the psychostimulants used as therapeutic option for ADHD, but its use has several controversies, such as the occurrence of toxicity and long-term damage. This study aimed to examine the effect of purple sweet potato ethanol extract on levels of the striatum dopamine neurotransmitter and stereotypic behavior in methylphenidate-induced rats.

Method: This research is a randomized posttest–only control group. Samples were male Wistar rats (Rattus norvegicus), aged 6-8 weeks (randomly divided into 2 groups). The treatment group was given purple sweet potato ethanol extract before MPH injection. Examination of dopamine levels using ELISA and stereotyped behavior were assessed using the stereotyped behavior rating scale. Statistical test was by Mann Witney test and independent t-test.

Results: The results showed striatum dopamine levels were significantly lower in the treatment group (given purple sweet potato ethanol extract before MPH was induced) than the control (6.83±2.83 vs. 10.02±4.35; p<0.05). Stereotypic behavior in the treatment group was significantly lower than the control group (3.46±0.63 vs. 3.96±0.70; p<0.05).

Conclusion: The ethanolic extract of purple sweet potato is thought to have antidopaminergic potential and cause a decrease in stereotypic behavior in MPH-induced wistar rats.

 

Latar belakang: Antosianin merupakan flavonoid yang memiliki berbagai potensi seperti antioksidan, antiinflamasi dan antiapoptosis. Salah satu sumber antosianin yang mudah ditemukan dan cukup umum di kalangan penduduk lokal Indonesia adalah ubi jalar ungu (Ipomoea batatas L.). Potensinya dapat mencegah dan mengobati dampak yang ditimbulkan oleh zat psikostimulan. Methylphenidate (MPH) merupakan salah satu psikostimulan yang digunakan sebagai pilihan terapi untuk Attention-deficit hyperactivity disorder (ADHD), namun pemakaiannya memiliki beberapa kontroversi seperti terjadinya efek toksik, penyalahgunaan dan timbulnya kerusakan jangka panjang. Penelitian ini bertujuan untuk melihat pengaruh pemberian ekstrak etanol ubi jalar ungu terhadap kadar neurotransmiter dopamin striatum dan perilaku stereotipi pada tikus yang diinduksi methylphenidate.

Metode: Rancangan penelitian yang digunakan yaitu randomized posttest–only control group. Sampel penelitian adalah tikus (Rattus norvegicus) galur Wistar jantan, berumur 6-8 minggu (secara random dibagi dalam 2 kelompok). Kelompok perlakuan diberikan ekstrak etanol ubi jalar ungu sebelum diinjeksi MPH, sedangkan kelompok kontrol tidak. Pemeriksaan kadar dopamin menggunakan teknik Elisa dan perilaku stereotipi dinilai memakai stereotyped behavior rating scale. Uji statistik menggunakan uji mann witney dan independent t-test.

Hasil: Hasil penelitian menunjukkan kadar dopamin striatum lebih rendah secara bermakna pada kelompok perlakuan (diberikan ekstrak etanol ubi jalar ungu sebelum diinduksi MPH) dibandingkan kontrol (6,83±2,83 vs. 10,02±4,35; p<0,05). Perilaku stereotipi pada kelompok perlakuan lebih rendah secara signifikan dibandingkan kontrol (3,46±0,63 vs. 3,96±0,70; p<0,05).

Kesimpulan: Ekstrak etanol ubi jalar ungu diperkirakan memiliki potensi antidopaminergik dan menyebabkan penurunan perilaku stereotipi pada tikus wistar yang diinduksi MPH.

References

  1. Kumar GP, Khanum F. Neuroprotective Potential of Phytochemicals. Pharmacogn Rev. 2012;6:81–90.
  2. Adnyana MO. The role of anthocyanin in biogenesis: purple sweet potato extract Bali cultivar studies in neurology aspects. Int J Med Rev Case Reports. 2020;4(11):47–52.
  3. Jawi IM, Budiasa K. Ekstrak Air Umbi Ubijalar Ungu Menurunkan Total Kolesterol serta Meningkatkan Total Antioksidan Darah Kelinci. J Vet. 2011;12(2):120–5.
  4. Jawi IM, Sutirta-Yasa IWP, Suprapta DN, Mahendra AN. Hypoglycemic and Antioxidant Activities of Balinese Purple Sweet Potato (IPOMOEA BATATAS L) in Induceddiabetic Rats. CIBTech J Pharm Sci. 2012;1(2–3):1–6.
  5. Wu PH, Shen YC, Wang YH, Chi CW, Yen JC. Baicalein attenuates methamphetamine-induced loss of dopamine transporter in mouse striatum. Toxicology. 2006;226(2–3):238–45.
  6. Narasingam M, Pandy V, Mohamed Z. Noni (Morinda citrifolia L.) fruit extract attenuates the rewarding effect of heroin in conditioned place preference but not withdrawal in rodents. Exp Anim. 2016;65(2):157–64.
  7. Pandy V, Vijeepallam K. Antipsychotic-like activity of scopoletin and rutin against the positive symptoms of schizophrenia in mouse models. Exp Anim. 2017;66(4):417–23.
  8. Pandy V, Wai YC, Roslan NFA, Sajat A, Jallb AHA, Vijeepallam K. Methanolic extract of Morinda citrifolia Linn. unripe fruit attenuates methamphetamine-induced conditioned place preferences in mice. Biomed Pharmacother. 2018;107:368–73.
  9. Berrios-Carcamo P, Quezada M, Quintanilla ME, Morales PM. Oxidative Stress and Neuroinflammation as a Pivot in Drug Abuse. A Focus on the Therapeutic Potential of Antioxidant and Anti-Inflammatory Agents and Biomolecules. Antioxidants. 2020;9(830).
  10. Goncalves DL, Matsushika A, De-Sales BB, Goshima T, Bon EP, Stambuk BU. Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hoxese transporters. Enzyme Microb Technol. 2014;63:13–20.
  11. Kementerian Kesehatan. Peraturan Menteri Kesehatan No 3 tahun 2017: Peraturan Menteri Kesehatan tentang Perubahan Penggolongan Psikotropika. Jakarta: BN.2017/No.53, kemenkes.go.id : 3 hlm; 2017.
  12. National Institute on Drug Abuse (NIDA). Stimulant ADHD Medications: Methylphenidate and Amphetamines. 2014.
  13. Faraone S V. The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci Biobehav Rev. 2018;87:255–70.
  14. Guzman F. Methylphenidate for ADHD: Mechanism of Action and Formulations. 2019.
  15. Bjarnadottir GD, Haraldsson HM, Rafnar BO, Sigurdsson E, Steingrimsson S, Johannsson M, et al. Prevalent intravenous abuse of methylphenidate among treatment-seeking patients with substance abuse disorders: a descriptive population-based study. J Addict Med. 2015;9(3):188–94.
  16. Chen R, Furman CA, Gnegy ME. Dopamine transporter trafficking: rapid response on demand. Futur Neuorology. 2010;5(1):123.
  17. Moszczynska A, Yamamoto BK. Methamphetamine oxidatively damages parkin and decreases the activity of 26S proteasome in vivo. J Neurochem [Internet]. 2011;116(6):1005–17. Available from: https://doi.org/10.1111/j.1471-4159.2010.07147.x
  18. Anneken J, Angoa-Perez M, Sati G, Crich D, Kuhn D. Dissecting the Influence of Two Structural Substituents on the Differential Neurotoxic Effects of Acute Methamphetamine and Mephedrone Treatment on Dopamine Nerve Endings with the Use of 4-Methylmethamphetamine and Methcathinone. J Pharmacol Exp. 2015;360:417–23.
  19. Yao X-Z, Ma R-C, Li H-J, Wang C, Zhang C, Yin S-S, et al. Assessment of the major odor contributors and health risks of volatile compounds in three disposal technologies for municipal solid waste. Waste Manag. United States; 2019 May;91:128–38.
  20. Ullah R, Khan M, Shah SA, Saeed K, Kim MO. Natural Antioxidant Anthocyanins-A Hidden Therapeutic Candidate in Metabolic Disorders with Major Focus in Neurodegeneration. Nutrients. 2019;11(6):1195.
  21. Omamuyovwi I, Polycarp N, Olayemi O, Augustine O, Magaret A. Effects of Methamphetamine on the Hippocampus of Rats: Behavioral and Morphological Approach. J Neurosci Behav Heal. 2011;3(8):107–12.
  22. Tilley MR, Gu HH. The effects of methylphenidate on knockin mice with a methylphenidate-resistant dopamine transporter. J Pharmacol Exp Ther. 2008;327(2):554–60.
  23. McDonnell-Dowling K, Kelly JP. The Role of Oxidative Stress in Methamphetamine-induced Toxicity and Sources of Variation in the Design of Animal Studies. Curr Neuropharmacol. 2017;15(2):300–14.
  24. Suprapta DN, Antara N, Sudana M, Duniaji AS, Sudarma M. Penelitian Peningkatan Kualitas dan Diversifikasi Penggunaan Umbi-umbian sebagai Sumber Pangan Alternatif di Bali. Laporan Hasil Penelitian Kerjasama BAPPEDA Provinsi Bali dan Fakultas Pertanian, UNUD. Denpasar; 2003.
  25. Albuquerque T, Sampio K, Souza E. Sweet potato roots: Unrevealing an old food as a source of health promoting bioactive compounds – A review. Trends Food Sci Technol. 2018;85.
  26. Panda V, Sonkamble M. Phytochemical Constituents and Pharmacological Activities of Ipomoea Batatas L. (Lam): A Review. Int J Res Phytochem Pharmacol. 2012;2(1):25–34.
  27. Primatanti PA, Jawi IM. Anthocyanin as neuroprotector for methamphetamine-induced neurotoxicity. Int J Heal Med Sci. 2019;3(1):11–6.
  28. Kim JK, Choi SJ, Cho HY, Kim YJ, Lim ST, Kim CJ, et al. Ipomoea batatas attenuates amyloid β peptide-induced neurotoxicity in ICR mice. J Med Food. 2011;14(3):304–9.
  29. Khairani AF, Nurhayati T, Rahman PHA, Nurhasanah, Khaerunnisa R, Jabbar SMFR, et al. The Effect of an Ethanol Extract of Purple sweet potato (Ipomoea batatas L.) on Exercise-Induced Oxidative Stress in Mice (Mus musculus). Pakistan J Nutr. 2019;18:824–33.
  30. Sams DF. Phencyclidine-induced stereotyped behaviour and social isolation in rats: a possible animal model of schizophreni. Behav Pharmacol. 1996;7(1):3–23.
  31. Xu S, Tu S, Gao J, Liu J, Gou Z, Zhang J, et al. Protective and restorative effects of the traditional Chinese medicine Jitai tablet against methamphetamine-induced dopaminergic neurotoxicity. BMC Complement Altern Med. 2018;18:76.
  32. Alvarez-Arellano L, Gonzalez-Garcia N, Salazar-Garcia M, Corona JC. Antioxidants as a Potential Target against Inflammation and Oxidative Stress in Attention-Deficit/Hyperactivity Disorder. Antioxidants (Basel). 2020;9(2):176.
  33. Kanazawa LK, Vecchia DD, Wendler EM, Hocayen PA, Beirao PS, De-Melo J, et al. Effects of acute and chronic quercetin administration on methylphenidate-induced hyperlocomotion and oxidative stress. Life Sci. 2017;171:1–8.
  34. Meireles AMO. Flavonoid Bioactivity: Transport Across Blood-Brain-Barrier and Neuroprotective Effects. In Vivo Studies. ProQuest Diss Publ. Portugal; 2016;
  35. Kumar S, Sing B. Medicinal & traditional uses of Shahtoot (Morus indica Linn): A review. Int J Unani Intergrative Med. 2020;4(2):40–7.
  36. Moshiri M, Roohbakhsh A, Talebi M, Iranshahy M, Etemad L. Role of natural products in mitigation of toxic effects of methamphetamine: a review of in vitro and in vivo studies. Avicenna J Phytomedicine. 2020;10(4):334.
  37. Pandy V, Narasingam M, Mohamed Z. Antipsychotic-like activity of Noni (Morinda citrifolia Linn.) in mice. BMC Complement Altern Med. 2012;12:186.
  38. Yadav A V, Nade VS. Anti-dopaminergic effect of the methanolic extract of Morus alba L. leaves. Indian J Pharmcology. 2008;40(5):221–6.
  39. Heal DJ, Smith SL, Gosden J, Nutt DJ. Amphetamine, past and present--a pharmacological and clinical perspective. J Psychopharmacol. 2013;27:479–96.
  40. Hayley AC, Shiferaw B, Downey LA. Amphetamine-induced alteration to gaze parameters: A novel conceptual pathway and implications for naturalistic behavior. Prog Neurobiol. 2021;199.
  41. Nwonu CNS, Ilensanmi OR, Agbedahunsi JM, Nwonu PC. Effects of the Aqueous and Methanol Extracts of Alchornea Laxiflora In Rodent Models of Experimental Psychosis. IOSR J Pharm Biol Sci. 2018;13(4):46–52.

How to Cite

Primatanti, P. A. (2022). Pengaruh ekstrak etanol umbi ubi jalar ungu terhadap kadar dopamin striatum dan perilaku stereotipi pada tikus wistar yang diinduksi methylphenidate. Intisari Sains Medis, 13(2), 335–339. https://doi.org/10.15562/ism.v13i2.1382

HTML
0

Total
0

Share

Search Panel

Putu Asih Primatanti
Google Scholar
Pubmed
ISM Journal