Skip to main content Skip to main navigation menu Skip to site footer

Potential effect of secondary metabolites in Persea americana seeds as an ?-amylase inhibitor on type 2 diabetes mellitus

Abstract

Background: Type 2 diabetes mellitus (T2DM) is a disease that has a high prevalence in the world. The development of plants with medicinal potential is an alternative to control blood sugar levels in T2DM disease, such as avocado (Persea americana). Persea americana seeds contain secondary metabolites that have anti-diabetic activity, but their bioavailability is low.

Aim: This study aims to review various secondary metabolites in Persea americana seeds that can reduce blood glucose levels in ?-amylase pathway along with the type of potential encapsulation as a delivery system.

Review: Secondary metabolites contained in Persea americana seeds which have activity as anti-diabetic are tannin, quercetin, rutin, kaempferol, saponin, triterpenoid, and alkaloid. Each of them has several mechanisms in diabetes, but their role as ?-amylase inhibitor on T2DM be in focus. There are various types of encapsulation that are known to be able to serve as a delivery system for these secondary metabolites. Those encapsulations are SNEDDS, chitosan-alginate nanoparticle, PLGA nanoparticle, lipid carrier, liposome, and polysaccharide-based enteric-coated nanoparticle. All of them showed good results in improving bioavailability.

Conclusion: It is known that various secondary metabolites found in Persea americana seeds influence reducing blood glucose levels notably in the ?-amylase pathway. The low bioavailability of secondary metabolites can be improved by several forms of potential encapsulation. Therefore, herbal substances as adjuvant therapy in T2DM might be a viable management option.

References

  1. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37(SUPPL.1):81–90.
  2. Kemenkes RI. Hari Diabetes Sedunia Tahun 2018. Pus Data dan Inf Kementrian Kesehat RI. 2019;1–8.
  3. Megaputri S. Manfaat Tanaman Mangrove Terhadap Pengobatan Diabetes. J Med Hutama. 2021;02(02):439–47.
  4. Oboh G, Ogunsuyi OB, Adegbola DO, Ademiluyi AO, Oladun FL. Influence of gallic and tannic acid on therapeutic properties of acarbose in vitro and in vivo in Drosophila melanogaster. Biomed J. 2019;42(5):317–27.
  5. Patala R, Dewi NP, Pasaribu MH. Efektivitas Ekstrak Etanol Biji Alpukat ( Persea americana Mill .) Terhadap Kadar Glukosa Darah Tikus Putih Jantan ( Rattus Novergicus ) Model ( Effectiveness of ethanol extract of avocado seeds ( Persea americana mill .) On blood glucose levels of male w. 2020;6(1):7–13.
  6. Badan Pusat Statistik. Statistik Tanaman Buah-buahan dan Sayuran Tahunan Indonesia. 2018.
  7. Hayati LN, Wiwiek Tyasningsih, Ratih Novita Praja, Sri Chusniati, Maya Nurwartanti Yunita PAW. Isolasi dan Identifikasi Staphylococcus aureus pada Susu Kambing Peranakan Etawah Penderita Mastitis Subklinis di. Med Vet. 2019;2(2):76–82.
  8. Kusbiantoro D? YP, Pemanfaatan. Pemanfaatan kandungan metabolit sekunder pada tanaman kunyit dalam mendukung peningkatan pendapatan masyarakat Utilization of secondary metabolite in the turmeric plant to increase community income. J Kultiv. 2018;17(1):544–9.
  9. Perdanawati E, Putri K, Hamzah B. Analisis kualitatif zat bioaktif pada ekstrak daun alpukat ( persea americana mill ) dan uji praklinis dalam menurunkan kadar glukosa darah pada mencit ( Mus musculus ) qualitative analysis of bioactive substance in avocado ( Persea americana Mill.) leaf. J Akad Kim. 2013;2(3):119–27.
  10. Lou W, Chen Y, Ma H, Liang G, Liu B. Antioxidant and ?-amylase inhibitory activities of tannic acid. J Food Sci Technol. 2018;55(9):3640–6.
  11. Aswathanarayan JB, Vittal RR. Nanoemulsions and Their Potential Applications in Food Industry. Front Sustain Food Syst. 2019 Nov 13;3:95.
  12. Indratmoko S, Suratmi, Issusilaningtyas E. Formulasi, karakterisasi dan evaluasi self-nano emulsifying drug delivery system (SNEDDS) ekstrak etanol kulit buah nanas sebagai antibakteri Streptococcus mutans. FITOFARMAKA J Ilm Farm [Internet]. 2021;11(1):12–22. Available from: http://www.tjyybjb.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=9987
  13. Mukhopadhyay P, Maity S, Mandal S, Chakraborti AS, Prajapati AK, Kundu PP. Preparation, characterization and in vivo evaluation of pH sensitive, safe quercetin-succinylated chitosan-alginate core-shell-corona nanoparticle for diabetes treatment. Carbohydr Polym [Internet]. 2018 Feb 15 [cited 2021 Jul 19];182:42–51. Available from: https://pubmed.ncbi.nlm.nih.gov/29279124/
  14. Chitkara D, Nikalaje SK, Mittal A, Chand M, Kumar N. Development of quercetin nanoformulation and in vivo evaluation using streptozotocin induced diabetic rat model. Drug Deliv Transl Res [Internet]. 2012 Apr 1 [cited 2021 Jul 19];2(2):112–23. Available from: https://pubmed.ncbi.nlm.nih.gov/25786720/
  15. Mel MMRD, Gunathilake KDPP, Fernando CAN. Formulation of microencapsulated rutin and evaluation of bioactivity and stability upon in vitro digestive and dialysis conditions. Int J Biol Macromol [Internet]. 2020;159:316–23. Available from: https://doi.org/10.1016/j.ijbiomac.2020.05.085
  16. Huang M, Su E, Zheng F, Tan C. Encapsulation of flavonoids in liposomal delivery systems: The case of quercetin, kaempferol and luteolin. Food Funct. 2017;8(9):3198–208.
  17. Sampathkumar K, Riyajan S, Tan CK, Demokritou P, Chudapongse N, Loo SCJ. Small-Intestine-Specific Delivery of Antidiabetic Extracts from Withania coagulans Using Polysaccharide-Based Enteric-Coated Nanoparticles. ACS Omega. 2019;4(7):12049–57.
  18. Saini V. Molecular mechanisms of insulin resistance in type 2 diabetes mellitus. World J Diabetes [Internet]. 2010 [cited 2021 Jul 22];1(3):68. Available from: /pmc/articles/PMC3083885/
  19. Cerf ME. Beta cell dysfunction and insulin resistance. Front Endocrinol (Lausanne) [Internet]. 2013 [cited 2021 Jul 22];4:1–23. Available from: https://pubmed.ncbi.nlm.nih.gov/23542897/
  20. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol [Internet]. 2018 [cited 2021 Jul 22];14(2):88–98. Available from: https://pubmed.ncbi.nlm.nih.gov/29219149/
  21. Pan X, Meriin A, Huang G, Kandror K V. Insulin-responsive amino peptidase follows the Glut4 pathway but is dispensable for the formation and translocation of insulin-responsive vesicles. Mol Biol Cell [Internet]. 2019 Jun 1 [cited 2021 Jul 22];30(12):1536–43. Available from: /pmc/articles/PMC6724691/
  22. Tjandrawinata RR. Patogenesis Diabetes Tipe 2 : Resistensi Defisiensi Insulin. Dexa Medica Gr. 2016;(February):1–4.
  23. Czech MP. Insulin action and resistance in obesity and type 2 diabetes. Nat Med [Internet]. 2017 Jul 11 [cited 2021 Jul 22];23(7):804–14. Available from: https://pubmed.ncbi.nlm.nih.gov/28697184/
  24. Gülçin I, Huyut Z, Elmasta? M, Aboul-Enein HY. Radical scavenging and antioxidant activity of tannic acid. Arab J Chem. 2010;3(1):43–53.
  25. Yamashita Y, Wang L, Nanba F, Ito C, Toda T, Ashida H. Procyanidin promotes translocation of glucose transporter 4 in muscle of mice through activation of insulin and AMPK signaling pathways. PLoS One. 2016;11(9):1–19.
  26. Alam MM, Meerza D, Naseem I. Protective effect of quercetin on hyperglycemia, oxidative stress and DNA damage in alloxan induced type 2 diabetic mice. Life Sci. 2014;109(1):8–14.
  27. Haddad P, Eid H. The Antidiabetic Potential of Quercetin: Underlying Mechanisms. Curr Med Chem. 2016 Sep;24(4):355–64.
  28. Youl E, Bardy G, Magous R, Cros G, Sejalon F, Virsolvy A, et al. Quercetin potentiates insulin secretion and protects INS-1 pancreatic -cells against oxidative damage via the ERK1/2 pathway. Br J Pharmacol. 2010;161(4):799–814.
  29. Kappel VD, Cazarolli LH, Pereira DF, Postal BG, Zamoner A, Reginatto FH, et al. Involvement of GLUT-4 in the stimulatory effect of rutin on glucose uptake in rat soleus muscle. J Pharm Pharmacol. 2013;65(8):1179–86.
  30. Cai Y, Fan C, Yan J, Tian N, Ma X. Effects of rutin on the expression of PPAR? in skeletal muscles of db/db mice. Planta Med. 2012;78(9):861–5.
  31. C S, L W, J S, Z W, Z T. Hypoglycemic and hypolipidemic effects of rutin on hyperglycemic rats. J Tradit Chinese Med = Chung i tsa chih ying wen pan. 2020 Aug;40(4):646–53.
  32. Alkhalidy H, Moore W, Wang Y, Luo J, McMillan RP, Zhen W, et al. The flavonoid kaempferol ameliorates streptozotocin-induced diabetes by suppressing hepatic glucose production. Molecules. 2018;23(9).
  33. Kwon DY, Kim YS, Ryu SY, Choi YH, Cha MR, Yang HJ, et al. Platyconic acid, a saponin from Platycodi radix, improves glucose homeostasis by enhancing insulin sensitivity in vitro and in vivo. Eur J Nutr. 2012;51(5):529–40.
  34. Sathish Kumar D, Vamshi Sharathnath K, Yogeswaran P, Harani A, Sudhakar K, Sudha P, et al. A medicinal potency of Momordica charantia. Int J Pharm Sci Rev Res. 2010;1(2):95–100.
  35. Putta S, Sastry Yarla N, Kumar Kilari E, Surekha C, Aliev G, Basavaraju Divakara M, et al. Therapeutic Potentials of Triterpenes in Diabetes and its Associated Complications. Curr Top Med Chem. 2016;16(23):2532–42.
  36. Khathi A, Serumula MR, Myburg RB, Van Heerden FR, Musabayane CT. Effects of Syzygium aromaticum-derived triterpenes on postprandial blood glucose in streptozotocin-induced diabetic rats following carbohydrate challenge. PLoS One. 2013;8(11):1–8.
  37. Rasouli H, Yarani R, Pociot F, Popovi?-Djordjevi? J. Anti-diabetic potential of plant alkaloids: Revisiting current findings and future perspectives. Pharmacol Res. 2020;155:104723.
  38. Chueh WH, Lin JY. Berberine, an isoquinoline alkaloid in herbal plants, protects pancreatic islets and serum lipids in nonobese diabetic mice. J Agric Food Chem. 2011;59(14):8021–7.
  39. Krzyzowska M, Tomaszewska E, Ranoszek-Soliwoda K, Bien K, Orlowski P, Celichowski G, et al. Tannic acid modification of metal nanoparticles: Possibility for new antiviral applications. Vol. 1, Nanostructures for Oral Medicine. Elsevier Inc.; 2017. 335–363 p.
  40. Mamta K, Sashi J. Tannins: An Antinutrient with Positive Effect to Manage Diabetes. Res J Recent Sci. 2012;1(12):1–8.
  41. Arukwe, U., Amadi, B.A., Duru, M.K.C., Agomuo, E.N., Adindu, E.A., Odika, P.C., Lele, K.C., Egejuru, L., Anudike J. Chemical composition of Persea americana leaf, fruit and seed. Int J Res Revies Appl Sci. 2012;11(2):346–9.
  42. Setyawan HY, Sukardi S, Puriwangi CA. Phytochemicals properties of avocado seed: A review. IOP Conf Ser Earth Environ Sci. 2021;733(1).
  43. Al-Ishaq RK, Abotaleb M, Kubatka P, Kajo K, Büsselberg D. Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules. 2019;9(9).
  44. David AVA, Arulmoli R, Parasuraman S. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharmacogn Rev. 2016 Jul;10(20):84.
  45. Rosero JC, Cruz S, Osorio C, Hurtado N. Analysis of Phenolic Composition of Byproducts (Seeds and Peels) of Avocado (Persea americana Mill.) Cultivated in Colombia. Molecules. 2019;24(17).
  46. Ghorbani A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed Pharmacother. 2017;96(September):305–12.
  47. Amiraragab B, Hussein SA, Alm-Eldeen A-E, Hafe z A, Mohamed T. Diabetes management saponins and their potential role in diabetes mellitus. Diabetes Manag. 2017;7(1):148–58.
  48. Morais FS, Canuto KM, Ribeiro PRV, Silva AB, Pessoa ODL, Freitas CDT, et al. Chemical profiling of secondary metabolites from Himatanthus drasticus (Mart.) Plumel latex with inhibitory action against the enzymes ?-amylase and ?-glucosidase: In vitro and in silico assays. J Ethnopharmacol. 2020;253(February):112644.
  49. Sales PM, Souza PM, Simeoni LA, Silveira D. ?-Amylase inhibitors: a review of raw material and isolated compounds from plant source. J Pharm Pharm Sci a Publ Can Soc Pharm Sci Soc Can des Sci Pharm. 2012;15(1):141–83.
  50. Loizzo MR, Marrelli M, Pugliese A, Conforti F, Nadjafi F, Menichini F, et al. Crocus cancellatus subsp. damascenus stigmas: chemical profile, and inhibition of ?-amylase, ?-glucosidase and lipase, key enzymes related to type 2 diabetes and obesity. J Enzyme Inhib Med Chem. 2016;31(2):212–8.
  51. Subba B, Gaire S, Raj Sharma K. Analysis of Phyto-Constituents, Antioxidant, and Alpha Amylase Inhibitory Activities of Persea Americana Mill., Rhododendron Arboretum Sm. Rubus Ellipticus Sm. From Arghakhanchi District Nepal. Asian J Pharm Clin Res. 2019;12(1):301.
  52. Kato CG, De Almeida Gonçalves G, Peralta RA, Seixas FAV, De Sá-Nakanishi AB, Bracht L, et al. Inhibition of ? -Amylases by Condensed and Hydrolysable Tannins: Focus on Kinetics and Hypoglycemic Actions. Enzyme Res. 2017;2017.
  53. Alhassan AJ, Sule MS, El-ta’alu AB, Lawal AT. In vitro inhibitory activities of Persea americana seed extracts on ?-amylase and ?-glucosidas. Bayero J Pure Appl Sci. 2018;10(1):546.
  54. Papoutsis K, Zhang J, Bowyer MC, Brunton N, Gibney ER, Lyng J. Fruit, vegetables, and mushrooms for the preparation of extracts with ?-amylase and ?-glucosidase inhibition properties: A review. Food Chem. 2021;338(May 2020):128119.
  55. Gonçalves R, Mateus N, de Freitas V. Inhibition of ?-amylase activity by condensed tannins. Food Chem. 2011;125(2):665–72.
  56. Li K, Yao F, Xue Q, Fan H, Yang L, Li X, et al. Inhibitory effects against ?-glucosidase and ?-amylase of the flavonoids-rich extract from Scutellaria baicalensis shoots and interpretation of structure–activity relationship of its eight flavonoids by a refined assign-score method. Chem Cent J. 2018;12(1):1–11.
  57. Proença C, Freitas M, Ribeiro D, Tomé SM, Oliveira EFT, Viegas MF, et al. Evaluation of a flavonoids library for inhibition of pancreatic ?-amylase towards a structure–activity relationship. J Enzyme Inhib Med Chem. 2019;34(1):577–88.
  58. Aisyah LS, Ilfani D, Lestari FP, Yun YF. ?-Amylase Inhibition Activities by Flavonoid Compounds from Panda Plants (Kalanchoe tomentosa). J Kim Sains dan Apl. 2020;23(3):96–101.
  59. Ak MD, Abrar M. ?-Amylase and ?-Glucosidase Inhibitors from Plant Extracts. J Med Vet. 2019;13(2):151–8.
  60. Luliana S, Desnita R, Martien R, Nurrochmad A. Total flavonoid contents and in silico study of flavonoid compounds from Meniran (Phyllanthus niruri L.) towards alpha-amylase and alpha-glucosidase enzyme. Pharmaciana. 2019;9(1):1–10.
  61. Nafiu MO, Ashafa AOT. Antioxidant and Inhibitory Effects of Saponin Extracts from Dianthus basuticus Burtt Davy on Key Enzymes Implicated in Type 2 Diabetes In vitro. Pharmacogn Mag. 2017/11/13. 2017;13(52):576–82.
  62. Nazaruk J, Borzym-Kluczyk M. The role of triterpenes in the management of diabetes mellitus and its complications. Phytochem Rev. 2015;14(4):675–90.
  63. Dandekar PD, Kotmale AS, Chavan SR, Kadlag PP, Sawant S V., Dhavale DD, et al. Insights into the Inhibition Mechanism of Human Pancreatic ?-Amylase, a Type 2 Diabetes Target, by Dehydrodieugenol B Isolated from Ocimum tenuiflorum. ACS Omega. 2021;6(3):1780–6.
  64. Bravo-alfaro DA, Muñoz-correa MOF, Santos-luna D, Toro- JF, Cano-sarmiento C, García-varela R, et al. Encapsulation of an insulin-modified phosphatidylcholine complex in a self-nanoemulsifying drug delivery system (SNEDDS) for oral insulin delivery. J Drug Deliv Sci Technol. 2020;57(6):1–32.
  65. Huda N, Wahyuningsih I. Karakterisasi Self-Nanoemulsifying Drug Delivery System (SNEDDS) Minyak Buah Merah (Pandanus cnoideus Lam.). J Farm dan Ilmu Kefarmasian Indones. 2016;3(2):49–57.
  66. Mohammed MA, Syeda JTM, Wasan KM, Wasan EK. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics. 2017;9(53):1–26.
  67. Lertsutthiwong P, Noomun K, Jongaroonngamsang N, Rojsitthisak P, Nimmannit U. Preparation of alginate nanocapsules containing turmeric oil. Carbohydr Polym. 2008 Oct 16;74(2):209–14.
  68. Setty CM, Sahoo SS, Sa B. Alginate-coated alginate-polyethyleneimine beads for prolonged release of furosemide in simulated intestinal fluid. Drug Dev Ind Pharm [Internet]. 2005 [cited 2021 Jul 19];31(4–5):435–46. Available from: https://pubmed.ncbi.nlm.nih.gov/16093209/
  69. Thai H, Thuy Nguyen C, Thi Thach L, Thi Tran M, Duc Mai H, Thi Thu Nguyen T, et al. Characterization of chitosan/alginate/lovastatin nanoparticles and investigation of their toxic effects in vitro and in vivo. Sci Rep. 2020;10(1):1–15.
  70. Mujtaba MA, Alotaibi NM. Chitosan-sodium Alginate Nanoparticle as a Promising Approach for Oral Delivery of Rosuvastatin Calcium: Formulation, Optimization and In vitro Characterization. J Pharm Res Int. 2020;32(1):50–6.
  71. Lertsutthiwong P, Rojsitthisak P, Nimmannit U. Preparation of turmeric oil-loaded chitosan-alginate biopolymeric nanocapsules. Mater Sci Eng C. 2009 Apr 30;29(3):856–60.
  72. Acharya S, Sahoo SK. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev [Internet]. 2011 Mar 18 [cited 2021 Jul 20];63(3):170–83. Available from: https://pubmed.ncbi.nlm.nih.gov/20965219/
  73. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: An overview of biomedical applications. J Control Release [Internet]. 2012 Jul 20 [cited 2021 Jul 20];161(2):505–22. Available from: https://pubmed.ncbi.nlm.nih.gov/22353619/
  74. Cun D, Jensen DK, Maltesen MJ, Bunker M, Whiteside P, Scurr D, et al. High loading efficiency and sustained release of siRNA encapsulated in PLGA nanoparticles: Quality by design optimization and characterization. Eur J Pharm Biopharm [Internet]. 2011 Jan [cited 2021 Jul 20];77(1):26–35. Available from: https://pubmed.ncbi.nlm.nih.gov/21093589/
  75. Sharma S, Parmar A, Kori S, Sandhir R. PLGA-based nanoparticles: A new paradigm in biomedical applications. TrAC - Trends Anal Chem. 2016 Jun 1;80:30–40.
  76. Ding D, Zhu Q. Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. Mater Sci Eng C [Internet]. 2018 Nov 1 [cited 2021 Jul 20];92:1041–60. Available from: https://pubmed.ncbi.nlm.nih.gov/30184728/
  77. Rezvantalab S, Drude NI, Moraveji MK, Güvener N, Koons EK, Shi Y, et al. PLGA-based nanoparticles in cancer treatment. Front Pharmacol. 2018 Nov 2;9:1–19.
  78. Silva ATCR, Cardoso BCO, Silva MESR e, Freitas RFS, Sousa RG. Synthesis, Characterization, and Study of PLGA Copolymer in Vitro Degradation. J Biomater Nanobiotechnol [Internet]. 2015 Jan 6 [cited 2021 Jul 20];6:8–19. Available from: http://www.scirp.org/Html/2-3200386_52929.htm
  79. Babazadeh A, Ghanbarzadeh B, Hamishehkar H. Novel nanostructured lipid carriers as a promising food grade delivery system for rutin. J Funct Foods. 2016 Oct 1;26:167–75.
  80. Nobari Azar FA, Pezeshki A, Ghanbarzadeh B, Hamishehkar H, Mohammadi M. Nanostructured lipid carriers: Promising delivery systems for encapsulation of food ingredients. J Agric Food Res. 2020 Dec 1;2:1–8.
  81. Štecová J, Mehnert W, Blaschke T, Kleuser B, Sivaramakrishnan R, Zouboulis CC, et al. Cyproterone Acetate Loading to Lipid Nanoparticles for Topical Acne Treatment: Particle Characterisation and Skin Uptake. Pharm Res 2007 245 [Internet]. 2007 Mar 20 [cited 2021 Jul 20];24(5):991–1000. Available from: https://link.springer.com/article/10.1007/s11095-006-9225-9
  82. Huang Z, Hua S, Yang Y, Fang J. Development and evaluation of lipid nanoparticles for camptothecin delivery: a comparison of solid lipid nanoparticles, nanostructured lipid carriers, and lipid emulsion. Acta Pharmacol Sin 2008 299 [Internet]. 2008 Sep [cited 2021 Jul 20];29(9):1094–102. Available from: https://www.nature.com/articles/aps2008132
  83. Ruktanonchai U, Bejrapha P, Sakulkhu U, Opanasopit P, Bunyapraphatsara N, Junyaprasert V, et al. Physicochemical characteristics, cytotoxicity, and antioxidant activity of three lipid nanoparticulate formulations of alpha-lipoic acid. AAPS PharmSciTech. 2009;10(1):227–34.
  84. Doktorovová S, Araújo J, Garcia M, … ER-C and SB, 2010 undefined. Formulating fluticasone propionate in novel PEG-containing nanostructured lipid carriers (PEG-NLC). Elsevier [Internet]. 2010 [cited 2021 Jul 20];75:538–42. Available from: https://sci-hub.do/https://www.sciencedirect.com/science/article/pii/S0927776509004664
  85. Souza LG, Silva EJ, Martins ALL, Mota MF, Braga RC, Lima EM, et al. Development of topotecan loaded lipid nanoparticles for chemical stabilization and prolonged release. Eur J Pharm Biopharm [Internet]. 2011 [cited 2021 Jul 20];79(1):189–96. Available from: https://sci-hub.do/https://www.sciencedirect.com/science/article/pii/S0939641111000786
  86. Souto EB, Almeida AJ, Müller RH. Lipid nanoparticles (SLN®, NLC®) for cutaneous drug delivery: Structure, protection and skin effects. J Biomed Nanotechnol. 2007 Dec;3(4):317–31.
  87. Das S, Chaudhury A. Recent Advances in Lipid Nanoparticle Formulations with Solid Matrix for Oral Drug Delivery. AAPS PharmSciTech 2010 121 [Internet]. 2010 Dec 21 [cited 2021 Jul 20];12(1):62–76. Available from: https://link.springer.com/article/10.1208/s12249-010-9563-0
  88. Amasya G, Badilli U, Aksu B, of NT-EJ, 2016 undefined. Quality by design case study 1: Design of 5-fluorouracil loaded lipid nanoparticles by the W/O/W double emulsion—Solvent evaporation method. Elsevier [Internet]. 2016 [cited 2021 Jul 20]; Available from: https://sci-hub.do/https://www.sciencedirect.com/science/article/pii/S0928098716300033
  89. Schubert M, pharmaceutics CM-G-E journal of, 2003 undefined. Solvent injection as a new approach for manufacturing lipid nanoparticles–evaluation of the method and process parameters. Elsevier [Internet]. [cited 2021 Jul 20]; Available from: https://sci-hub.do/https://www.sciencedirect.com/science/article/pii/S0939641102001303
  90. Charcosset C, El-Harati A, release HF-J of controlled, 2005 undefined. Preparation of solid lipid nanoparticles using a membrane contactor. Elsevier [Internet]. [cited 2021 Jul 20]; Available from: https://sci-hub.do/https://www.sciencedirect.com/science/article/pii/S0168365905003366
  91. Koning GA, Storm G. Targeted drug delivery systems for the intracellular delivery of macromolecular drugs. Drug Discov Today. 2003 Jun 1;8(11):482–3.
  92. Metselaar JM, Storm G. Liposomes in the treatment of inflammatory disorders. Expert Opin Drug Deliv [Internet]. 2005 May [cited 2021 Jul 20];2(3):465–76. Available from: https://www.tandfonline.com/doi/abs/10.1517/17425247.2.3.465
  93. Hua S, Wu SY. The use of lipid-based nanocarriers for targeted pain therapies. Front Pharmacol. 2013;4:1–7.
  94. Ding B Sen, Dziubla T, Shuvaev V V., Muro S, Muzykantov VR. Advanced drug delivery systems that target the vascular endothelium. Mol Interv. 2006 Apr;6(2):98–112.
  95. Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:1–13.
  96. Choudhury A, Sonowal K, Laskar RE, Deka D, Dey BK. Liposome: a carrier for effective drug delivery. J Appl Pharm Res. 2020;8(1):22–8.
  97. Sampathkumar K, Loo SCJ. Targeted Gastrointestinal Delivery of Nutraceuticals with Polysaccharide-Based Coatings. Macromol Biosci [Internet]. 2018 Apr 1 [cited 2021 Jul 21];18(4):1–11. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/mabi.201700363

How to Cite

Indrakusuma, A. A. B. P., Wahyuni, L. P. S., Wiguna, I. G. W. W., Devy, A. A. T., Sasmana, I. G. A. P., & Indrayani, A. W. (2021). Potential effect of secondary metabolites in Persea americana seeds as an ?-amylase inhibitor on type 2 diabetes mellitus. Intisari Sains Medis, 12(3), 886–896. https://doi.org/10.15562/ism.v12i3.1119

HTML
181

Total
148

Share

Search Panel

Anak Agung Bagus Putra Indrakusuma
Google Scholar
Pubmed
ISM Journal


Luh Putu Sudi Wahyuni
Google Scholar
Pubmed
ISM Journal


I Gede Wikania Wira Wiguna
Google Scholar
Pubmed
ISM Journal


Anggi Amanda Triana Devy
Google Scholar
Pubmed
ISM Journal


I Gede Aswin Parisya Sasmana
Google Scholar
Pubmed
ISM Journal


Agung Wiwiek Indrayani
Google Scholar
Pubmed
ISM Journal