Review Article

Peran vitamin B6 terhadap inflamasi pada adhesi peritoneal pasca laparotomi: tinjauan pustaka

Made Agus Dwianthara Sueta , I Dewa Made Sukrama

Made Agus Dwianthara Sueta
Departemen Ilmu Bedah, Divisi Digestif, Fakultas Kedokteran, Universitas Udayana, RSUP Sanglah, Denpasar, Bali, Indonesia. Email: agus_sueta@yahoo.com

I Dewa Made Sukrama
Departemen Mikrobiologi, Fakultas Kedokteran, Universitas Udayana, RSUP Sanglah, Bali, Indonesia
Online First: October 05, 2021 | Cite this Article
Sueta, M., Sukrama, I. 2021. Peran vitamin B6 terhadap inflamasi pada adhesi peritoneal pasca laparotomi: tinjauan pustaka. Intisari Sains Medis 12(3): 699-705. DOI:10.15562/ism.v12i3.1105


Vitamin B6 or pyridoxine has been shown to modulate hypoxia and inflammation, but it has not yet confirmed their local effects on the peritoneum. Although there was no study regarding this issue, pyridoxine effects on suppressing these two pathways look promising as a preventing agent against peritoneal adhesion. The development of intraperitoneal adhesion post-operation is one of the most common complications after abdominal surgery. Approximately 95% of patients who underwent laparotomy can develop adhesions in the future. Pathogenesis of adhesion consists of three important processes which were induced by trauma: trauma or direct tissue injury-induced suppression of degradation of fibrinolytic matrix and extracellular system, inflammation response with cytokine production, particularly TGF-? and interleukin, also tissue hypoxia as the impact from circulation disorder toward mesothelial cell and sub-mesothelial fibroblasts, which results as increasing hypoxia-inducible factor-alpha (HIF-1?) and vascular endothelial growth factor (VEGF), which are responsible for generating collagen and angiogenesis process. Pyridoxine has biological activity and interesting characteristics in avoiding intra-peritoneal adhesion by dealing with inflammation effects and hypoxia. From the inflammation process, pyridoxine has been shown can hinder macrophage, decrease IL-6, suppress TLR-mediated TAK1 phosphorylation, JNK, IKK-I?B?, which can cause a reduction in NF-?B activation and NLRP3-mediated caspase-1, also suppress iNOS and cyclooxygenase-2 (COX2), which contributed to developing intra-peritoneal adhesion.

 

Vitamin B6 (Vit B6), atau piridoksin telah ditunjukkan dapat memodulasi efek hipoksia dan inflamasi, tetapi belum dikonfirmasi efek lokalnya pada peritoneum. Walaupun belum ada penelitian langsung, efek supresi vitamin B6 terhadap kedua jalur tersebut sangat menjanjikan sebagai agen prevensi adhesi peritoneal. Perkembangan adhesi intraperitoneal pasca operasi adalah salah satu komplikasi paling umum setelah operasi abdominal. Sekitar 95% pasien yang menjalani laparotomi akan mengalami perlengketan di kemudian hari. Patogenesis adhesi melibatkan tiga proses penting yang diinduksi trauma: trauma atau kerusakan jaringan langsung menginduksi penghambatan sistem degradasi matriks fibrinolitik dan ekstraseluler, respons inflamasi dengan produksi sitokin, terutama TGF-? dan interleukin, serta hipoksia jaringan sebagai akibat dari gangguan suplai darah ke sel mesothelial dan fibroblas submesothelial, yang mengarah pada peningkatan hypoxia inducible factor-alpha (HIF-1?) dan faktor pertumbuhan endotel vaskular (VEGF), yang bertanggung jawab untuk pembentukan kolagen dan angiogenesis. Vitamin B6 menyajikan sifat dan aktivitas biologis yang menarik untuk mencegah adhesi intraperitoneal dengan mengatasi efek inflamasi dan hipoksia. Pada jalur inflamasi, vitamin B6  terbukti menghambat makrofag, menurunkan IL-6, menghambat fosforilasi TLR-mediated TAK1, JNK, serta IKK-I?B?, yang menyebabkan penurunan aktivasi NF-?B and NLRP3-mediated caspase-1, serta menghambat iNOS dan cyclooxygenase-2 (COX2) yang berkontribusi terhadap pembentukkan adhesi intraperitoneal.

References

Brüggmann D, Tchartchian G, Wallwiener M, Münstedt K, Tinneberg HR, Hackethal A. Intra-abdominal adhesions: definition, origin, significance in surgical practice, and treatment options. Dtsch Arztebl Int. 2010;107(44):769-775.

Hellmann H, Mooney S. Vitamin B6: a molecule for human health?. Molecules. 2010;15(1):442-459.

Mooney S, Hellmann H. Vitamin B6: Killing two birds with one stone?. Phytochemistry. 2010;71(5-6):495-501.

Milingos S, Kallipolitis G, Loutradis D, et al. Adhesions: laparoscopic surgery versus laparotomy. Ann N Y Acad Sci. 2000;900:272-285.

Diamond MP, Wexner SD, diZereg GS, Korell M, Zmora O, Van Goor H, et al. Adhesion prevention and reduction: current status and future recommendations of a multinational interdisciplinary consensus conference. Surg Innov. 2010;17(3):183-188.

Ergul E, Korukluoglu B. Peritoneal adhesions: facing the enemy. Int J Surg. 2008;6(3):253-260.

Ellis H, Moran BJ, Thompson JN, Parker MC, Wilson MS, Menzies D, et al. Adhesion-related hospital readmissions after abdominal and pelvic surgery: a retrospective cohort study. Lancet. 1999;353(9163):1476-1480.

Atta HM. Prevention of peritoneal adhesions: a promising role for gene therapy. World J Gastroenterol. 2011;17(46):5049-5058.

Reed KL, Fruin AB, Bishop-Bartolomei KK, Gower AC, Nicolaou M, Stucchi AF, et al. Neurokinin-1 receptor and substance P messenger RNA levels increase during intraabdominal adhesion formation. J Surg Res. 2002;108(1):165-72.

Arung W, Meurisse M, Detry O. Pathophysiology and prevention of postoperative peritoneal adhesions. World J Gastroenterol. 2011;17(41):4545-4553.

Hoshino A, Kawamura YI, Yasuhara M, Toyama-Sorimachi N, Yamamoto K, Matsukawa A, et al. Inhibition of CCL1-CCR8 interaction prevents aggregation of macrophages and development of peritoneal adhesions. J Immunol. 2007;178(8):5296-304.

Herrick SE, Mutsaers SE, Ozua P, Sulaiman H, Omer A, Boulos P, et al. Human peritoneal adhesions are highly cellular, innervated, and vascularized. J Pathol. 2000;192(1):67-72.

Holmdahl L, Ivarsson ML. The role of cytokines, coagulation, and fibrinolysis in peritoneal tissue repair. Eur J Surg. 1999;165(11):1012-1019.

Williams RS, Rossi AM, Chegini N, Schultz G. Effect of transforming growth factor beta on postoperative adhesion formation and intact peritoneum. J Surg Res. 1992;52(1):65-70.

Tafani M, Sansone L, Limana F, Arcangeli T, De Santis E, Polese M, et al. The Interplay of Reactive Oxygen Species, Hypoxia, Inflammation, and Sirtuins in Cancer Initiation and Progression. Oxid Med Cell Longev. 2016;2016:3907147.

Kondoh M, Ohga N, Akiyama K, Hida Y, Maishi N, Towfik AM, et al. Hypoxia-induced reactive oxygen species cause chromosomal abnormalities in endothelial cells in the tumor microenvironment. PLoS One. 2013;8(11):e80349.

Tugasworo D, Kurnianto A, Retnaningsih, Andhitara Y, Ardhini R, Dyaksani R, et al. Recombinant tissue plasminogen activator (rTPA) in young adult patient with acute ischemic stroke: a case report. Bali Medical Journal. 2020;9(3):863-867.

Thakur M, Rambhatla A, Qadri F, Chatzicharalampous C, Awonuga M, Saed G, et al. Is There a Genetic Predisposition to Postoperative Adhesion Development? Reprod Sci. 2021;28(8):2076-2086.

Olczyk P, Mencner ?, Komosinska-Vassev K. The role of the extracellular matrix components in cutaneous wound healing. Biomed Res Int. 2014;2014:747584.

Sulaiman H, Dawson L, Laurent GJ, Bellingan GJ, Herrick SE. Role of plasminogen activators in peritoneal adhesion formation. Biochem Soc Trans. 2002;30(2):126-131.

Rout UK, Diamond MP. Role of plasminogen activators during healing after uterine serosal lesioning in the rat. Fertil Steril. 2003;79(1):138-145.

Tschumperlin DJ. Fibroblasts and the ground they walk on. Physiology (Bethesda). 2013;28(6):380-390.

Attard JA, MacLean AR. Adhesive small bowel obstruction: epidemiology, biology and prevention. Can J Surg. 2007;50(4):291-300.

Maciver AH, McCall M, James Shapiro AM. Intra-abdominal adhesions: cellular mechanisms and strategies for prevention. Int J Surg. 2011;9(8):589-594.

Ueland PM, McCann A, Midttun Ø, Ulvik A. Inflammation, vitamin B6 and related pathways. Mol Aspects Med. 2017;53:10-27.

ten Broek RP, Issa Y, van Santbrink EJ, Bouvy ND, Kruitwagen RF, Jeekel J, et al. Burden of adhesions in abdominal and pelvic surgery: systematic review and met-analysis. BMJ. 2013;347:f5588.

Víte?ek J, Lojek A, Valacchi G, Kubala L. Arginine-based inhibitors of nitric oxide synthase: therapeutic potential and challenges. Mediators Inflamm. 2012;2012:318087.

Ehmedah A, Nedeljkovic P, Dacic S, Repac J, Draskovic Pavlovic B, Vucevic D, et al. Vitamin B Complex Treatment Attenuates Local Inflammation after Peripheral Nerve Injury. Molecules. 2019;24(24):4615.

Zhang P, Tsuchiya K, Kinoshita T, Kushiyama H, Suidasari S, Hatakeyama M, et al. Vitamin B6 Prevents IL-1? Protein Production by Inhibiting NLRP3 Inflammasome Activation. J Biol Chem. 2016;291(47):24517-24527.

Vermaak WJ, Barnard HC, Potgieter GM, Theron HD. Vitamin B6 and coronary artery disease. Epidemiological observations and case studies. Atherosclerosis. 1987;63(2-3):235-238.

Corsello T, Komaravelli N, Casola A. Role of Hydrogen Sulfide in NRF2- and Sirtuin-Dependent Maintenance of Cellular Redox Balance. Antioxidants (Basel). 2018;7(10):129.

Boldyrev AA, Aldini G, Derave W. Physiology and pathophysiology of carnosine. Physiol Rev. 2013;93(4):1803-1845.


No Supplementary Material available for this article.
Article Views      : 143
PDF Downloads : 71