Research Article

Kesesuaian pewarnaan gram dengan kultur darah sebagai prediktor nilai kritis kasus bakteremia di Rumah Sakit Umum Pusat Sanglah, Denpasar

Putu Yoska Arya Harindana , Ida Sri Iswari, Indramawan Setyojatmiko, Ni Nengah Dwi Fatmawati

Putu Yoska Arya Harindana
Program Pendidikan Dokter Spesialis Mikrobiologi Klinik, Fakultas Kedokteran Universitas Udayana / Rumah Sakit Umum Pusat Sanglah, Denpasar, Bali. Email:

Ida Sri Iswari
Departemen Mikrobiologi Klinik Fakultas Kedokteran Universitas Udayana / Rumah Sakit Umum Pusat Sanglah, Denpasar, Bali

Indramawan Setyojatmiko
Program Pendidikan Dokter Spesialis Mikrobiologi Klinik, Fakultas Kedokteran, Universitas Udayana/Rumah Sakit Umum Pusat Sanglah, Denpasar, Bali

Ni Nengah Dwi Fatmawati
Departemen Mikrobiologi Klinik Fakultas Kedokteran Universitas Udayana / Rumah Sakit Umum Pusat Sanglah, Denpasar, Bali
Online First: July 17, 2021 | Cite this Article
Harindana, P., Iswari, I., Setyojatmiko, I., Fatmawati, N. 2021. Kesesuaian pewarnaan gram dengan kultur darah sebagai prediktor nilai kritis kasus bakteremia di Rumah Sakit Umum Pusat Sanglah, Denpasar. Intisari Sains Medis 12(2): 494-499. DOI:10.15562/ism.v12i2.1038

Background: One of the considerations for giving empiric antibiotics in bacteremia cases is gram staining (GS) results. Accurate and fast results are required in distinguishing infection-caused bacteria. However, the data on how much the corresponding gram stain results with bacterial growth in blood cultures are still insufficient.

Aim: The study aims to compare Gram stain results with bacterial growth in positive blood cultures.

Methods: A cross-sectional analytic study obtained data from the VITEK® 2 Compact (bioMérieux) results for six months (January - June 2020). Data involved all blood cultures examined as many as 509.

Results: Of the 509 blood samples, 46 were reported as critical values for bacteremia. Gram-negative bacillus bacteria were identified in 39.13% of the gram staining (GS) and 45.65% of the blood culture (BC) samples. Gram-positive bacteria appeared in 56.52% of GS and 52.17% of BC. MBRO (multidrug-resistant organisms) bacteria were identified in the proportion of 11%, then 13% from ESBL (extended-spectrum beta-lactamase) bacteria, and they remain as 4% MRSA (methicillin-resistant Staphylococcus aureus) bacteria. The higher result, 76% of the data was confirmed from the non-ICU patients.

Conclusion: GS can be used as a reference for empiric antibiotic therapy due to its effectiveness, and it has a high degree of similarity with positive blood culture results.



Latar belakang: Salah satu pertimbangan pemberian antibiotika empiris pada kasus bakteremia adalah berdasarkan hasil pewarnaan gram. Dibutuhkan hasil yang akurat dan cepat dalam membedakan bakteri penyebab infeksi. Namun sedikit data tentang berapa besar kesesuaian hasil pewarnaan gram dengan pertumbuhan bakteri pada kultur darah. Untuk membandingkan hasil pewarnaan gram dengan pertumbuhan bakteri pada kultur darah yang positif.

Metode: Penelitian ini merupakan penelitian analitik cross-sectional. Data diperoleh dari hasil VITEK® 2 Compact (bioMérieux) selama enam bulan (Januari – Juni 2020). Sampel penelitian adalah semua kultur darah yang diperiksa pada periode penelitian berjumlah 509.

Hasil: Dari 509 sampel spesimen darah, 46 sampel dilaporkan sebagai nilai kritis prediktor bakteremia. Bakteri batang gram negatif teridentifikasi pada 39,13% sampel pewarnaan gram dan 45,65% sampel hasil kultur darah. Bakteri gram positif muncul pada 56,52% sampel pewarnaan gram dan 52,17% sampel hasil kultur darah. Bakteri MDRO (multidrug resistant organisms) teridentifikasi sebanyak 11%, 13% bakteri ESBL (extended spectrum beta lactamase), dan 4% bakteri MRSA (methicillin-resistant Staphylococcus aureus). Proporsi 76% sampel berasal dari pasien non-ICU.

Simpulan: Hasil pewarnaan gram dapat digunakan sebagai acuan terapi antibiotika empiris karena memiliki tingkat kesesuaian yang tinggi dengan hasil kultur darah positif.


Uehara Y, Yagoshi M, Tanimichi Y, Yamada H, Shimoguchi K, Yamamoto S, et al. Impact of Reporting Gram Stain Results from Blood Culture Bottles on the Selection of Antimicrobial Agents. American Journal of Clinical Pathology. 2009;132(1):18-25.

Hoerr V, Zbytnuik L, Leger C, Tam PP, Kubes P, Vogel HJ. Gram-negative and Gram-positive bacterial infections give rise to a different metabolic response in a mouse model. J Proteome Res. 2012;11(6):3231-3245. doi:10.1021/pr201274r

Miller JM, Binnicker MJ, Campbell S, Caroll KC, Chapin KC, Gilligan PH, et al. A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2018 Update by the Infectious Diseases Society of America and the American Society for Microbiology. Clin Infect Dis. 2018;67(6):e1-e94. doi:10.1093/cid/ciy381

Taniguchi T, Tsuha S, Shiiki S, Narita M. Gram-stain-based antimicrobial selection reduces cost and overuse compared with Japanese guidelines. BMC Infect Dis. 2015;15:458. doi: 10.1186/s12879-015-1203-6

Thairu Y, Nasir I, Usman Y. Laboratory perspective of gram staining and its significance in investigations of infectious diseases. Sub-Saharan African Journal of Medicine, 2014;1(4):168-74.

Rand KH, Tillan M. Errors in Interpretation of Gram Stains From Positive Blood Cultures. American Journal of Clinical Pathology. 2006;126(5):686-90.

Verhelst R, Verstraelen H, Claeys G, Verschraegen G, Van Simaey L, De Ganck C, et al. Comparison between Gram stain and culture for the characterization of vaginal microflora: Definition of a distinct grade that resembles grade I microflora and revised categorization of grade I microflora. BMC Microbiology. 2005;5(1):61.

Scerbo MH, Kaplan HB, Dua A, et al. Beyond Blood Culture and Gram Stain Analysis: A Review of Molecular Techniques for the Early Detection of Bacteremia in Surgical Patients. Surg Infect (Larchmt). 2016;17(3):294-302. doi:10.1089/sur.2015.099

Hall KK, Lyman JA. Updated review of blood culture contamination. Clin Microbiol Rev. 2006;19(4):788-802. doi:10.1128/CMR.00062-05

?ród?owski T, Sobo?ska J, Salamon D, McFarlane IM, Zi?tkiewicz M, Gosiewski T. Classical Microbiological Diagnostics of Bacteremia: Are the Negative Results Really Negative? What is the Laboratory Result Telling Us About the "Gold Standard"?. Microorganisms. 2020;8(3):346. doi:10.3390/microorganisms8030346

Samosir, NE, Loesnihari R, Aman AK. Correlation between Time to Positivity Blood Culture. Indonesian Journal of Clinical Pathology and Medical Laboratory. 2019; 25(3): 283-289

Lamy B, Dargère S, Arendrup MC, Parienti JJ, Tattevin P. How to Optimize the Use of Blood Cultures for the Diagnosis of Bloodstream Infections? A State-of-the-Art. Front Microbiol. 2016;7:697. doi:10.3389/fmicb.2016.00697

Garcia RA, Spitzer ED, Beaudry J, Beck C, Diblasi R, Gilleeny-Blabac M, et al. Multidisciplinary team review of best practices for collection and handling of blood cultures to determine effective interventions for increasing the yield of true-positive bacteremias, reducing contamination, and eliminating false-positive central line-associated bloodstream infections. Am J Infect Control. 2015;43(11):1222-1237.

Gonzalez MD, Chao T, Pettengill MA. Modern Blood Culture: Management Decisions and Method Options. Clin Lab Med. 2020;40(4):379-392. doi:10.1016/j.cll.2020.07.001

Marginson MJ, Daveson KL, Kennedy KJ. Clinical impact of reducing routine blood culture incubation time from 7 to 5 days. Pathology. 2014;46(7):636-639. doi:10.1097/PAT.0000000000000167

Bourbeau PP, Pohlman JK. Three days of incubation may be sufficient for routine blood cultures with BacT/Alert FAN blood culture bottles. J Clin Microbiol. 2001;39(6):2079-2082. doi:10.1128/JCM.39.6.2079-2082.2001

Bourbeau PP, Foltzer M. Routine incubation of BacT/ALERT FA and FN blood culture bottles for more than 3 days may not be necessary. J Clin Microbiol. 2005;43(5):2506-2509. doi:10.1128/JCM.43.5.2506-2509.2005

Moustos E, Staphylaki D, Christidou A, Spandidos DA, Neonakis IK. Major pathogen microorganisms except yeasts can be detected from blood cultures within the first three days of incubation: A two-year study from a University Hospital. Exp Ther Med. 2017;14(6):6074-6076. doi:10.3892/etm.2017.5291

Peretz A, Isakovich N, Pastukh N, Koifman A, Glyatman T, Brodsky D. Performance of Gram staining on blood cultures flagged negative by an automated blood culture system. European Journal of Clinical Microbiology. 2015;34:1539-1541

Barenfanger J, Graham DR, Kolluri L, Sangwan G, Lawhorn J, Drake CA, et al. Decreased mortality associated with prompt Gram staining of blood cultures. Am J Clin Pathol. 2008;130(6):870-876. doi:10.1309/AJCPVMDQU2ZJDPBL

Roshdy DG, Tran A, LeCroy N, Zeng D, Ou F-s, Daniels LM, et al. Impact of a Rapid Microarray-Based Assay for Identification of Positive Blood Cultures for Treatment Optimization for Patients with Streptococcal and Enterococcal Bacteremia. J Clin Microbiol, 2015;53(4):1411-1414.

Kikuchi K, Matsuda M, Iguchi S, Mizutani T, Hiramatsu K, Tega-Ishii M, et al. Potential Impact of Rapid Blood Culture Testing for Gram-Positive Bacteremia in Japan with the Verigene Gram-Positive Blood Culture Test. Canadian Journal of Infectious Diseases and Medical Microbiology. 2017;1:1-10.

Bramardipa A, Sukrama IDM., Budayanti N. Bacterial pattern and its susceptibility toward antibiotic on burn infection in Burn Unit Sanglah General Hospital. Bali Medical Journal. 2019;8(1):328-333. doi:10.15562/bmj.v8i1.1456

No Supplementary Material available for this article.
Article Views      : 248
PDF Downloads : 141